• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Researchers map mosquito cells that may help the insects choose tastiest humans

Bioengineer by Bioengineer
February 21, 2023
in Health
Reading Time: 3 mins read
0
Mosquito Cells
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In a bid to understand why mosquitoes may be more attracted to one human than another, Johns Hopkins Medicine researchers say they have mapped specialized receptors on the insects’ nerve cells that are able to fine-tune their ability to detect particularly “welcoming” odors in human skin.

Mosquito Cells

Credit: Johns Hopkins Medicine

In a bid to understand why mosquitoes may be more attracted to one human than another, Johns Hopkins Medicine researchers say they have mapped specialized receptors on the insects’ nerve cells that are able to fine-tune their ability to detect particularly “welcoming” odors in human skin.

Receptors on mosquito neurons have an important role in the insects’ ability to identify people who present an attractive source of a blood meal, according to Christopher Potter, Ph.D., associate professor of neuroscience at the Johns Hopkins University School of Medicine. “Understanding the molecular biology of mosquito odor-sensing is key to developing new ways to avoid bites and the burdensome diseases they cause,” he says.

Worldwide, mosquito-borne diseases such as malaria, dengue fever, and West Nile virus afflict 700 million people and kill 750,000 each year. Although mosquito control efforts using nets and pesticides have helped reduce the toll, the development of better repellants to sabotage odorant attraction remains a priority.

Mosquitoes detect odors mostly through their antennae, and scientists have long observed that variations in odors, heat, humidity and carbon dioxide are factors in attracting mosquitos to some individuals more than others.

But, says Potter, the insects use multiple senses to find hosts. Anopheles gambiae, a family of mosquitoes that cause malaria, for example, has three types of receptors that stud the surface of neurons in their organs that sense odor: odorant, gustatory and ionotropic receptors.

Odorant receptors, says Potter, are the most well studied by scientists and are thought to help mosquitoes distinguish between animals and humans. Gustatory receptors detect carbon dioxide. Ionotropic receptors respond to acids and amines, compounds found on human skin. It is thought that different levels of particular acids on human skin might be a reason for some people to be more attractive to mosquitoes than others, says Potter.

Because of the potential for ionotropic receptors to guide a mosquito to prefer one type of human skin over another, Potter and postdoctoral researchers Joshua Raji and Joanna Konopka looked for them in mosquito antenna.

In a report published in the Feb. 28 issue of Cell Reports, the researchers described their search for the receptors in segmented tube-like antennae of 10 female and 10 male mosquitoes.

Bites to human skin come from female mosquitoes, although some research indicates that males are also attracted to human odors.

To find neurons expressing ionotropic receptors in the antennae, the researchers used a technique called fluorescent in situ hybridization, which pinpoints not the receptors themselves, but genetic material called RNA, a cousin of DNA. Finding RNA linked to ionotropic receptors means that the neurons are highly likely to be producing such receptors.

The scientists thought they’d find similar numbers of ionotropic receptor-laden neurons in each of the antennae segments, but they found the majority of ionotropic receptors in the distal (farthest from the head) part of the antennae.

They also found, however, that the antennae had more ionotropic receptors in the proximal (near the head) part of the mosquitoes. All told, Potter says his team’s experiments show that mosquito antennae are more complex than we previously thought them to be, says Potter.

Ionotropic receptors are known to work with “partner” receptors to respond to odors, “kind of like a dance partner,” says Potter. In the current study, the researchers were able to identify some pairings of receptors that predicted if an ionotropic receptor would respond to acids or amines. They verified these predictions by using genetic engineering to visualize the responses of an ionotropic receptor called Ir41c in the mosquito. Ir41c-expressing neurons were activated by one type of amine as predicted, but were inhibited (turned off) by a different type of amine.

Potter suspects that the ability of ionotropic receptor-expressing neurons to be both activated and inhibited by odors may allow mosquitoes to increase the range of responses ionotropic receptors can play in odor detection and in driving behaviors. Future studies, he says, will focus on identifying the specific ionotropic receptors that cause mosquitoes to be attracted to human odors. 

This research was supported by the National Institutes of Health (R01Al137078), the Department of Defense, the Johns Hopkins Postdoctoral Accelerator Award, the Johns Hopkins Malaria Research Institute, the Natural Science and Engineering Research Council and Bloomberg Philanthropies.

DOI: 10.1016/j.celrep.2023.112101



Journal

Cell Reports

DOI

10.1016/j.celrep.2023.112101

Share12Tweet8Share2ShareShareShare2

Related Posts

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

February 7, 2026

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

February 7, 2026

Barriers and Boosters of Seniors’ Physical Activity in Karachi

February 7, 2026

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.