• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New pumping strategy could slash energy costs of fluid transport by 22%

Bioengineer by Bioengineer
February 17, 2023
in Chemistry
Reading Time: 3 mins read
0
Turbulence
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A collaboration between the Okinawa Institute of Science and Technology (OIST) and the Polytechnic University of Milan has found that when a fluid is pumped through a pipe in an intermittent way, the cost of transport is significantly reduced. 

Turbulence

Credit: OIST

A collaboration between the Okinawa Institute of Science and Technology (OIST) and the Polytechnic University of Milan has found that when a fluid is pumped through a pipe in an intermittent way, the cost of transport is significantly reduced. 

In their proof-of-concept study, published recently in Scientific Reports, the researchers used numerical simulations to show that when they periodically switched a pump on and off, the fluid flow kept transitioning between a turbulent and laminar state. This reduced energy costs by up to 22% – a figure which the researchers say can be further optimized.

Laminar flows, like the kind you see when you slowly crack a tap open, are smooth, streamlined and energy efficient. Turbulent flows, on the other hand, such as those when a tap runs full blast, are chaotic and waste energy.  

“If you inject ink into a laminar flow, you’ll see a clear line of ink moving down the pipe, but with a turbulent flow, the ink diffuses as each fluid particle takes an unpredictable path. This chaotic motion at the small scales results in a lot of energy being lost,” explained Giulio Foggi Rota, first author and current PhD student in the Complex Fluids and Flows Unit. “Laminar flows are ideal for fluid transport, but when viscous fluids move fast and over large scales, the system naturally evolves towards a turbulent state.” 

Reducing turbulence, and therefore the costs of moving fluids through pipes could bring numerous economic and environmental benefits. The transport of fluids makes up a significant part of the final cost of fuel, so liquid hydrogen could become cheaper for developed countries to transition to. For developing countries that are not yet able to make the switch to green energy, oil and natural gas could become a more affordable energy alternative to firewood, the use of which contributes to deforestation and produces more harmful pollutants than fossil fuels. 

In the study, the researchers created a code that, when run on a powerful supercomputer, was able to simulate a standardized turbulent flow. 

The scientists ran different scenarios, changing the duration of time that the pump was switched on, the intensity of the pump (how fast it accelerated the fluid), and the overall length of time for each on-off pump cycle. 

They found that long cycles characterized by a short, intense pump that quickly accelerated the fluid flow, and then a long phase where the pump was switched off and the fluid slowed down, worked best for keeping the fluid in a laminar-like state for the longest amount of time. 

For the next step, the researchers want to try to better understand the physics underlying the repeated transition between the turbulent and laminar-like states. 

“If we can gain a fuller understanding of why the fluid behaves like it does due to unsteady pumping, then we will be much closer to working out what is the optimal pumping strategy for saving the most amount of energy,” said Professor Marco Edoardo Rosti, who leads the OIST Complex Fluids and Flows Unit. 



Journal

Scientific Reports

DOI

10.1038/s41598-023-28519-x

Method of Research

Computational simulation/modeling

Subject of Research

Not applicable

Article Title

Saving energy in turbulent flows with unsteady pumping

Article Publication Date

23-Jan-2023

COI Statement

The authors declare no competing interests.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.