• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Food quality matters for southern resident killer whales, UBC study states

Bioengineer by Bioengineer
February 17, 2023
in Biology
Reading Time: 4 mins read
0
Low lipid Chinook are a problem for SRKW
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Not all Chinook salmon are created equal, and this has a major impact on the energetics for southern resident killer whales. A recent study quantified the lipid content in Fraser River Chinook salmon – the southern resident’s preferred meal – and found that spring-run Chinook salmon, the earliest to arrive to the Salish Sea are lipid-rich and energy dense; a critical factor for the killer whales who prey on them. Fraser River Chinook salmon that come later in the season have lower energy density.

Low lipid Chinook are a problem for SRKW

Credit: Infographic © Ayodele Oloko and Benia Nowak

Not all Chinook salmon are created equal, and this has a major impact on the energetics for southern resident killer whales. A recent study quantified the lipid content in Fraser River Chinook salmon – the southern resident’s preferred meal – and found that spring-run Chinook salmon, the earliest to arrive to the Salish Sea are lipid-rich and energy dense; a critical factor for the killer whales who prey on them. Fraser River Chinook salmon that come later in the season have lower energy density.

“This research helps us quantify the energetic requirements of the southern residents,” said Jacob Lerner, lead author of the study and a doctoral student in the Pelagic Ecosystems Lab at the Institute for the Oceans and Fisheries. “For example, if the southern residents ate just low-lipid salmon, they would have to eat around 80,000 more Chinook salmon every year than if they just ate high-lipid salmon.”

Southern resident killer whales are an iconic species in British Columbia’s Salish Sea and down the northeastern Pacific coast. With black and white markings, these marine mammals can weigh up to 12,000 pounds and be up to 26 feet long. They are fierce, social creatures that live and hunt in family group pods. And, sadly, there are only 73 left in the world.

Critically endangered by a number of anthropogenic factors, including noise pollution and high levels of water contaminants, their decline is mostly based on the limited availability of their preferred prey – Chinook salmon. However, there are many distinct populations of Chinook salmon available throughout the year, some with stock-specific differences in energy density, and not all in decline.

“We began with an initial hypothesis that these salmon were all created equal, that they all have the same value to resident killer whales. And we quickly realized that this is not true at all,” said Lerner. “They all have different levels of lipid content.”

Quantifying that lipid content is important as it directly relates to the caloric value of a salmon, assigning its value as prey. Specific estimates of lipid content for Chinook populations with different distributions, or run-timings, could be used to inform trends in killer whale populations, properly time fisheries closures, or even decide which hatcheries to augment to increase high quality food availability for southern residents, Lerner said.

This is particularly important as southern resident killer whales are a migratory species and often spend their winter months elsewhere. When they return to the Salish Sea for the spring and summer, their arrival often coincides with the arrival of the spring-run Fraser River Chinook salmon.

“Southern resident killer whales used to come here earlier in the spring season when they could eat early migrating Chinook salmon,” said Brian Hunt, associate professor in the Institute for the Oceans and Fisheries. “Those early Chinook were very energy dense as they need to fuel their long freshwater migration back to their spawning grounds, but those stocks have been declining. With the whales coming later, they mainly have access to Chinook from the lower Fraser. These fish don’t migrate very far, and have lower energy density.”

As a major source of prey for southern residents, estimates of lipid content from Fraser bound Chinook salmon may be one of the keys to helping both threatened species. “We identified a spectrum of high, medium and low-lipid Chinook populations from the Fraser that can be used to better inform energetics models and manage both species,” Lerner stated, “We also identified life history parameters for the salmon to predict where on this spectrum they may fall.”

Though the study has quantified lipid content in Fraser River Chinook, and shown new light on its life history drivers, there is still little information on how ocean conditions influence this energy accumulation.

“We plan to keep monitoring Fraser Chinook salmon fat content,” said Hunt. “And one of questions we want to answer is how changing ocean conditions might be affecting their energy accumulation. Our concern is that ocean warming and food web shifts in the North Pacific Ocean are leading to lower energy accumulation in Chinook salmon. This will have implications for both the Chinook themselves – will they have enough energy for return migration and spawning? – and the killers whales that depend on them.”

‘Seasonal variation in the lipid content of Fraser River Chinook Salmon (Oncorhynchus tshawytscha) and its implications for Southern Resident Killer Whale (Orcinus orca) prey quality‘ was published in Scientific Reports.



Journal

Scientific Reports

DOI

10.1038/s41598-023-28321-9

Method of Research

Meta-analysis

Subject of Research

Animals

Article Title

Seasonal variation in the lipid content of Fraser River Chinook Salmon (Oncorhynchus tshawytscha) and its implications for Southern Resident Killer Whale (Orcinus orca) prey quality

COI Statement

The authors declare no competing interests.

Share12Tweet8Share2ShareShareShare2

Related Posts

Stem Cell Reports Announces New Additions to Its Editorial Board

Stem Cell Reports Announces New Additions to Its Editorial Board

October 2, 2025
blank

New Insights on Bluetongue Virus in South Asia

October 2, 2025

Ancient Ear Bones Rewrite the Story of Freshwater Fish Evolution

October 2, 2025

Newly Discovered Tiny Prehistoric Fish Sheds Light on the Origins of Catfish and Carp

October 2, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    92 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    82 shares
    Share 33 Tweet 21
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Scientists Create Molecular Qubits for Communication at Telecom Frequencies

This researcher aims to explore the reasons why exercise reduces the risk of diseases for a science magazine article.

Stem Cell Reports Announces New Additions to Its Editorial Board

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.