• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

UTA research professor identifies brain cells linked to pediatric seizures

Bioengineer by Bioengineer
February 17, 2023
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A University of Texas at Arlington bioengineer and his doctoral student have discovered how to identify which brain cells lead to epileptic episodes in children.

Christos Papadelis

Credit: UT Arlington

A University of Texas at Arlington bioengineer and his doctoral student have discovered how to identify which brain cells lead to epileptic episodes in children.

Professor of Research Christos Papadelis and doctoral student Ludovica Corona, who is first author, have written a paper published in Brain, a highly touted scientific journal. The study, “Non-invasive mapping of epileptogenic networks predicts surgical outcome,” is supported by UT Arlington and Cook Children’s Health Care System and funded by the National Institute of Neurological Disorders and Stroke and was produced in collaboration with Boston Children’s Hospital, Massachusetts General Hospital and Harvard Medical School.

Papadelis and his team used noninvasive techniques and advanced computational methods to measure the electric and magnetic signals generated by neural cells in the human brain and identify functional networks that are responsible for the generation of seizures in children suffering from epilepsy. This new method identifies those functional networks with high precision.

“This could benefit so many children who can’t control epilepsy with drugs, which represents between 20 and 30% of children suffering from epilepsy,” said Papadelis, who also serves as the director of research in the Jane and John Justin Neurosciences Center at Cook Children’s Health Care System.

Currently, Papadelis said, epilepsy surgery is the safest and most effective treatment for these patients since it offers a 50% chance of eliminating seizures.

“By identifying which parts of the brain are producing the seizures, we can then resect them with brain surgery or ablate them with laser,” Papadelis said. “The test we developed pinpoints exactly where the epilepsy network is occurring. Currently, there is no clinical exam to identify this brain area with high precision.

“Seizures affect these children throughout their entire live and have significant impact in their normal development. Successful treatment of epilepsy through surgery or laser ablation early in life would provide an improved outcome for these children since their brains possess extensive neural plasticity and can recover after surgery better than adult brains. This would help the children live seizure-free and have less comorbidities from epilepsy.”

Epilepsy is a common neurological disorder affecting about 3.4 million people in the United States. Of those, about 470,000 are children, or about one of every 100 children in the U.S. Children with uncontrolled seizures are at increased risk for poor long-term intellectual and psychological outcomes, along with poor health-related quality of life.

Michael Cho, chair of the UTA Department of Bioengineering, said this research is a characteristic example of how bioengineering research can have a direct impact on the lives of patients.

“This research has real promise,” Cho said. “In many areas, the quicker and more accurately the problems are detected and solved, the better chance patients have of living normal lives. The diagnostic tool is great in that it is non-invasive as well.”

 



Journal

Brain

Method of Research

Imaging analysis

Subject of Research

Cells

Article Title

Non-invasive mapping of epileptogenic networks predicts surgical outcome

Article Publication Date

15-Feb-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Rewrite Organic-inorganic covalent selenium reversing ischemic reperfusion injury as a headline for a science magazine post, using no more than 8 words

August 28, 2025

Rewrite Nuclear PKM2: a signal receiver, a gene programmer, and a metabolic modulator as a headline for a science magazine post, using no more than 8 words

August 28, 2025

Boosting Graduate Seminar Engagement with Active Learning

August 28, 2025

Study Finds Lack of Strong Evidence Supporting Alternative Autism Treatments

August 28, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Rewrite Validation of the cancer fatigue scale (CFS) in a UK population as a headline for a science magazine post, using no more than 7 words

Rewrite Recyclable luminescent solar concentrator from lead-free perovskite derivative as a headline for a science magazine post, using no more than 8 words

Rewrite Organic-inorganic covalent selenium reversing ischemic reperfusion injury as a headline for a science magazine post, using no more than 8 words

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.