• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Uncovering bacteria survival strategies

Bioengineer by Bioengineer
February 8, 2023
in Chemistry
Reading Time: 3 mins read
0
antibiotic tolerance
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Bacteria that develop genetic resistance to antibiotics cause millions of human deaths annually. Yet genetic resistance is only one way bacteria can survive antibiotics.

antibiotic tolerance

Credit: Texas A&M Engineering

Bacteria that develop genetic resistance to antibiotics cause millions of human deaths annually. Yet genetic resistance is only one way bacteria can survive antibiotics.

Researchers from Texas A&M University investigated variations in the electrochemical energies that power bacterial growth to understand how bacteria develop antibiotic tolerance without acquiring new genes or mutating existing ones. These energies are intense: the contributing electric field in a single bacterium can be stronger than those in lightning bolts. 

“Bacteria have developed numerous adaptation strategies over billions of years to survive in adverse environments,” said Dr. Pushkar Lele, associate professor in the Artie McFerrin Department of Chemical Engineering at Texas A&M. “Most mechanisms of adaptation are yet to be understood.”

Every year, approximately 3 million pounds of antibiotics are used in human medicine, and eight times that amount is used to keep livestock healthy for human consumption. Unfortunately, excess and untargeted use of antibiotics can create conditions that are ripe for the emergence of antibiotic resistance in bacteria.

Previous studies have noted that individual bacterial cells lacking sufficient energy frequently survive lethal doses of antibiotics. These dormant cells may not possess genes that can confer resistance to antibiotics. Instead, they sleep through the antibiotic attack.

“Antibiotics eliminate actively growing bacteria, usually by targeting key processes in the cell,” Lele said. “In a dormant bacterium, those processes may be stymied, rendering the antibiotics ineffective. High energy levels, in fact, are considered detrimental to their chances of survival.”

The team was surprised, therefore, when they observed surviving cells of Escherichia coli swimming rapidly for several hours in the presence of antibiotics. Bacteria swim by rotating slender appendages called flagella. The flagella are rotated several hundred times each second by strong electric fields across the cell membrane. Thus, the experiments suggested, against the grain of conventional wisdom, that survivors maintain high electrochemical energies.

To investigate the correlation between cell energy and antibiotic tolerance, the researchers treated cells with several antibiotic combinations. Using fluorescent dyes and sensitive photon detection techniques, they monitored the electrochemical energy levels in surviving cells. The cells unexpectedly exhibited a wide range of energies despite being in a state of arrested growth.

Next, the team determined how the survivors might respond to subsiding levels of antibiotics if the treatment was truncated. Working at a single-cell level, they discovered that cells with high energies began growing immediately once the antibiotic threat was removed, demonstrating the perils of incomplete antibiotic courses.

The results suggest that some bacteria can survive the antibiotic onslaught even if they are neither dormant nor resistant. Worryingly, such bacteria retain the ability to swim out of harmful environments and spread rapidly. Plus, high energy retention enables them to adapt to the antibiotics in various ways.

“The energy source in E. coli that powers motility also powers many transporters, often called efflux pumps,” Lele said. “These transporters can pump antibiotics out of the cell to mitigate the threat. The swimming cells we observed possibly adapted via this mechanism.”

Medical treatment often involves switching to a different antibiotic if an infected patient fails to respond to initial antibiotic intervention. According to Lele, the fascinating aspect of their discovery is that cells with high energies survive more frequently when antibiotics are switched than when a single antibiotic is used.

“Our findings also suggest that despite being genetically identical, cells in a population can and do employ diverse mechanisms to adapt to antibiotic stress,” Lele said. “Treatment regimens would have better outcomes if they accounted for such diversity.”

The team published their findings in an American Society for Microbiology mBio Journal article titled “Heterogeneous Distribution of Proton-Motive Force in Nonheritable Antibiotic Resistance” in January 2023.

The National Institute of Allergy and Infectious Diseases, a United States Department of Health and Human Services Agency, supported the project. Researchers on the project include Lele, Annie H. Lee, Dr. Rachit Gupta, Hong Nhi Nguyen, Isabella R. Schmitz and Dr. Deborah A. Siegele.

By Nancy Luedke, Texas A&M Engineering



Journal

mBio

DOI

10.1128/mbio.02384-22

Article Title

Heterogeneous Distribution of Proton Motive Force in Nonheritable Antibiotic Resistance

Article Publication Date

4-Jan-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Non-Coding RNAs Crucial in Topotecan Cancer Response

Delayed Diagnosis Offers No Harm to Intussusception Success

Evaluating Rohu Fry Transport: Key Water Quality Insights

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.