• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

HKUST breakthrough identifies rare tumor cell “spies”

Bioengineer by Bioengineer
February 2, 2023
in Health
Reading Time: 3 mins read
0
Figure 1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at the Hong Kong University of Science and Technology (HKUST) developed a novel technology which allows genomic DNA and RNA sequencing to be carried out simultaneously in single cells of both frozen and fresh tissues, and identified rare brain tumor cell “spies” disguised as normal cells with this method. This breakthrough facilitates cancer research for some of the most complex and rare tumors, opening new directions for drug target discovery in the future.

Figure 1

Credit: HKUST

Researchers at the Hong Kong University of Science and Technology (HKUST) developed a novel technology which allows genomic DNA and RNA sequencing to be carried out simultaneously in single cells of both frozen and fresh tissues, and identified rare brain tumor cell “spies” disguised as normal cells with this method. This breakthrough facilitates cancer research for some of the most complex and rare tumors, opening new directions for drug target discovery in the future.

Genomic DNA and RNA sequencing are crucial for determining the treatment for cancer, as it offers important information on the tumor’s genomic and molecular composition, or cellular heterogeneity, which influences the disease pathology as well as the tumor’s ability to develop drug resistance.  Our present knowledge about cancers do not fully explain why tumors relapse or become resistant to treatment; exploring new dimensions of the tumor composition at high resolution by looking at the DNA and RNA together may provide answers. Existing technologies, however, have limited applicability to simultaneously perform DNA and RNA sequencing in single cells from frozen biobanked tissues, yet these frozen tissues make up most of the readily available clinical cancer samples. 

Now, a team led by Prof. Angela WU, Associate Professor of HKUST’s Division of Life Science and Department of Chemical and Biological Engineering and her post-doctoral fellow Dr. Lei YU, developed a new versatile single-cell multi-omic profiling technology scONE-seq, which can analyze frozen cells and difficult-to-obtain cell types like bone and brain. This new method can also simultaneously collect genomic and transcriptomic information in a tumor through a one-pot reaction.   

Astrocytoma is a deadly and aggressive type of brain tumor, and patients with this type of tumor have a survival rate of only around 5 percent within five years of diagnosing the disease.  Using their new single-cell technology, the team has discovered a small and unique tumor cell subpopulation in a patient’s astrocytoma sample. This unique tumor population disguised themselves as normal astrocytes of the brain, which could escape detection using other common tumor sequencing methods. In addition, this ‘spy’ tumor cell also showed molecular features that are related to drug resistance; the comprehensive role of this ‘spy’ tumor cell in tumor progression will be an important direction for future investigations of this disease and possible drug targets.

Prof. Angela WU said, “By identifying rare tumor cells which might be missed by previous approaches and result in failure to respond to therapy, the scONE-seq approach represents a new path to discovering drug targets and the development of new drugs. We plan to continue our work, using scONE-seq to profile a larger patient cohort, and hope to have more clinically translational outcomes in the future.”

This study was done in collaboration with Prof Jiguang WANG and his team from HKUST’s Division of Life Science and Department of Chemical and Biological Engineering, as well as clinician scientists Dr. Danny CHAN, Dr. Aden CHEN, Dr. Ho Keung NG, and Dr. Wai Sang POON at Chinese University of Hong Kong and Prince of Wales Hospital. The discovery is recently published in Science Advances. 
 



Journal

Science Advances

DOI

10.5281/zenodo.6796059

Method of Research

Imaging analysis

Subject of Research

Human tissue samples

Article Title

scONE-seq: A single-cell multi-omics method enables simultaneous dissection of phenotype and genotype heterogeneity from frozen tumors

Article Publication Date

4-Jan-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Stefan Kappe, Ph.D., Renowned Malaria Researcher, Named Director of UM School of Medicine’s Center for Vaccine Development and Global Health

Stefan Kappe, Ph.D., Renowned Malaria Researcher, Named Director of UM School of Medicine’s Center for Vaccine Development and Global Health

September 8, 2025

TriCAM Study Explores Complementary Medicine in Stem Cell Transplants

September 8, 2025

PRMT1 Protein Mitigates Brain Damage After Ischemia by Inhibiting RIPK1-Driven Cell Death Pathways

September 8, 2025

New C-3-Substituted Oleanolic Acid Benzyl Amide Shows Promise Against Influenza A by Inhibiting PA–PB1 Interaction and Regulating Macrophage Inflammation

September 8, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Open-Source Data Platform Launched to Advance Lung Cancer Genetics Research

AI Reveals Stress Levels in Farmed Amazonian Fish, New Study Shows

Overcoming Resistance Mutations and the Blood–Brain Barrier: Major Challenges in Targeted Therapy for Brain Metastases in Non-Small Cell Lung Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.