• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Near-zero-dispersion soliton and broadband modulational instability Kerr microcombs in anomalous dispersion

Bioengineer by Bioengineer
February 2, 2023
in Chemistry
Reading Time: 3 mins read
0
MI microcombs with 2/3-octave spanning.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Microresonators based frequency combs, microcombs, have attracted huge interest in the last decades for their revolutionary performance of compact size, flexible comb spacing, and broad bandwidth. Wide applications of microcombs including optical frequency synthesizer, atomic clock, lidar, spectroscopy and optical communications have been reported. Among these applications, it is highly desired that the microcombs simultaneously have a broad spectral coverage while maintaining a small mode spacing (typically < 50 GHz). However, limited by waveguide loss or dispersion control, it is still very challenging for microcomb generation techniques.

MI microcombs with 2/3-octave spanning.

Credit: by Zeyu Xiao, Tieying Li, Minglu Cai, Hongyi Zhang, Yi Huang, Chao Li, Baicheng Yao, Kan Wu and Jianping Chen

Microresonators based frequency combs, microcombs, have attracted huge interest in the last decades for their revolutionary performance of compact size, flexible comb spacing, and broad bandwidth. Wide applications of microcombs including optical frequency synthesizer, atomic clock, lidar, spectroscopy and optical communications have been reported. Among these applications, it is highly desired that the microcombs simultaneously have a broad spectral coverage while maintaining a small mode spacing (typically < 50 GHz). However, limited by waveguide loss or dispersion control, it is still very challenging for microcomb generation techniques.

In a new paper published in Light: Science & Application, a team of scientists, led by Professor Kan Wu from Shanghai Jiao Tong University, and Professor Baicheng Yao from University of Electronic Science and Technology of China, explores the dynamics of Kerr comb generation in the near-zero anomalous-dispersion regime. Thanks to the ultra-small anomalous group-velocity dispersion, they have experimentally obtained a 2/3-octave-spaning microcomb in the broadband modulational instability (MI) state with a spectrum from 1240 nm to 1950 nm and a mode spacing of 10 GHz. The corresponding number of comb lines is more than 8400. Moreover, they have observed a novel soliton structure in near-zero anomalous-dispersion regime, and term these solitons as “anomalous-dispersion based near-zero-dispersion soliton”. This near-zero-dispersion soliton (NZDS) has tightly packed multi-soliton structures with local repetition frequency up to 8.6 THz and individual pulse width less than 100 fs. The corresponding spectral span is >32 THz and the comb line number is >3200. The reported technique provides a new sight into the nonlinear dynamics of the Kerr microcombs near the zero-dispersion regime and presents a feasible solution for generating broadband microcomb with dense comb lines.

This work is performed in a high-Q Fabry-Perot microresonator based on highly nonlinear fiber. The fiber F-P microresonator is a flexible platform to study the Kerr soliton dynamics near zero-dispersion region. This platform guarantees that the observed phenomena are representative of the pure χ(3) nonlinearity and high-order dispersion, with no need to consider the avoided mode-crossing effects in integrated multimode microresonators, or the periodic perturbations due to dispersive waves in a long fiber cavity. These scientists summarize the technical characteristics of their work.

“We adopt a pulsed pumping scheme to drive this near-zero dispersion F-P microresonator. Pulsed pumping scheme can effectively reduce the demand for average pumping power and alleviate the intracavity thermal effect.”

“The microcombs in broadband MI state and near-zero-dispersion soliton state possess their own potential application scenarios. The MI microcomb state has advantages of high conversion efficiency and widely accessible range, which is suitable for the high power microcomb application. In contrast, near-zero-dispersion soliton state has relatively low phase-noise feature and self-organized structures, which provides unique capabilities in the applications of optical computing, light sensing, communication and spectroscopy, etc. This work presents a flexible strategy to choose the operating state of the microcombs depending on the requirement of the application.” the scientists forecast.



Journal

Light Science & Applications

DOI

10.1038/s41377-023-01076-8

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

3D Gut-Brain-Vascular Model Reveals Disease Links

Low-Inflammation in Elderly UTIs: Risks and Resistance

Urinary Clusterin: Tracking Kidney Disease and Treatment Response

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.