• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Elucidation of electrolyte decomposition behavior in all-solid-state lithium-sulfur batteries

Bioengineer by Bioengineer
January 31, 2023
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Overview

Science of redox reactions in all-solid-state lithium-sulfur batteries

Credit: COPYRIGHT (C) TOYOHASHI UNIVERSITY OF TECHNOLOGY. ALL RIGHTS RESERVED.

Overview

A research group of the Department of Electrical and Electronic Information Engineering at Toyohashi University of Technology – consisting of Hirotada Gamo, a doctoral course student; Kazuhiro Hikima, assistant professor; and Atsunori Matsuda, professor – has elucidated the decomposition behavior of electrolytes in the cathode composites of all-solid-state lithium-sulfur batteries (ASSLSB). It was found that the sulfide solid electrolytes in the ASSLSB’s cathode composites were converted into thiophosphates with long-chain cross-linked sulfur through the charging and discharging cycle. These decomposition products govern the overall battery performance of ASSLSBs. The study was published online in the Chemistry of Materials on December 15, 2022.

(https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.2c02926)

 

Details

Currently, electric vehicle (EV) market is expanding and thus require the development of better onboard storage batteries. ASSLSBs are expected to become next-generation high-energy-density batteries owing to the use of high-capacity cathode active materials, such as sulfur (S) and lithium sulfide (Li2S). In order to ensure that ASSLSBs offer optimal performance, robust ion and electron conduction pathways must be established within the cathode composites, which are comprised of cathode active materials with sulfide solid electrolytes and a conductive agent (carbon material). However, battery performance is presently limited due to insufficient ionic conduction pathways provided by the sulfide solid electrolytes in the cathode composite. Also, sulfide solid electrolytes cause the oxidative decomposition within the ASSLSB’s operating voltage. Excessive decomposition of solid electrolytes results in the loss of ionic conduction pathways within the cathodes, and thus to degraded capacity. It is therefore important to understand the decomposition behavior of sulfide solid electrolytes in cathode composites in order to improve ASSLSB performance. In according to previous reports, sulfide solid electrolytes are converted into redox-active decomposition products after the oxidation decomposition, which show reversible redox reactions. However, how sulfide solid electrolytes decompose in ASSLSBs remains unclear.

Accordingly, the research team used planetary ball milling to mix Li2S as the cathode active material, Li3PS4 as the sulfide solid electrolyte, and carbon material to fabricate the cathode composite; on which they then conducted electrochemical measurements and Raman spectroscopy, and analyzed how the electrolyte in the cathode composite of the ASSLSBs decomposed during charging and discharging.

Basic electrochemical measurements revealed that redox reactions in ASSLSBs include the oxidative decomposition of Li3PS4 and redox reactions of its decomposition products, as well as redox reactions of the cathode active materials. After prolonged repetition of these cycles, the cathode active materials lost their electrochemical activity, and only the redox reactions of Li3PS4 decomposition products remained evident. This demonstrates that the long-term performance of ASSLSBs is governed by the electrochemical redox activity of Li3PS4 decomposition products. Raman spectroscopy on the cathode composite after 20 cycles revealed a peak derived from a S-S bond. These experiments demonstrated that the cathode active materials react with the sulfide solid electrolytes in ASSLSBs during the charging and discharging cycle to form thiophosphates with long-chain cross-linked sulfur.

 

Future Outlook

Through this research, we established how the decomposition of the sulfide solid electrolyte governs the overall performance of ASSLSBs, and demonstrated how important it is to control the interface between the cathode active materials and the solid electrolyte. Going forward, we would like to establish guidelines for interface design to suppress decomposition reactions of sulfide solid electrolytes in the cathode composite based on these research results.

 

Reference

Hirotada Gamo, Kazuhiro Hikima, Atsunori Matsuda (2022). Understanding Decomposition of Electrolytes in All-Solid-State Lithium-Sulfur Batteries. Chemistry of Materials,  doi.org/10.1021/acs.chemmater.2c02926.

 

This research was made possible with a Grant-in-Aid for JSPS Fellows (JP21J12809).



Journal

Chemistry of Materials

DOI

10.1021/acs.chemmater.2c02926

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Understanding Decomposition of Electrolytes in All-Solid-State Lithium–Sulfur Batteries

Article Publication Date

15-Dec-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Why Beer Foam Stays So Stable: The Science Behind the Perfect Pour

Why Beer Foam Stays So Stable: The Science Behind the Perfect Pour

August 26, 2025
SwRI Scientist Heads Science Team for New NASA Heliophysics AI Foundation Model

SwRI Scientist Heads Science Team for New NASA Heliophysics AI Foundation Model

August 26, 2025

Expanding Azole Chemistry with Precise N-Alkylation

August 26, 2025

Advancing Green Technology with More Efficient and Reliable SiC Devices

August 26, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

BFGF Protects Ovaries from CTX Toxicity via Signaling

Continuous Tracking of Left Ventricular dP/dtmax

Examining Occupational Gaps and Cognitive Decline in Seniors

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.