• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New method to control electron spin paves the way for efficient quantum computers

Bioengineer by Bioengineer
January 30, 2023
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Quantum science has the potential to revolutionize modern technology with more efficient computers, communication, and sensing devices. Challenges remain in achieving these technological goals, however, including how to precisely manipulate information in quantum systems.

Spin valley coupling

Credit: University of Rochester illustration / Michael Osadciw

Quantum science has the potential to revolutionize modern technology with more efficient computers, communication, and sensing devices. Challenges remain in achieving these technological goals, however, including how to precisely manipulate information in quantum systems.

In a paper published in Nature Physics, a group of researchers from the University of Rochester, including John Nichol, an associate professor of physics, outlines a new method for controlling electron spin in silicon quantum dots—tiny, nanoscale semiconductors with remarkable properties—as a way to manipulate information in a quantum system.

“The results of the study provide a promising new mechanism for coherent control of qubits based on electron spin in semiconductor quantum dots, which could pave the way for the development of a practical silicon-based quantum computer,” Nichol says.

Using quantum dots as qubits

A regular computer consists of billions of transistors, called bits. Quantum computers, on the other hand, are based on quantum bits, also known as qubits. Unlike ordinary transistors, which can be either “0” (off) or “1” (on), qubits are governed by the laws of quantum mechanics and can be both “0” and “1” at the same time.

Scientists have long considered using silicon quantum dots as qubits; controlling the spin of electrons in quantum dots would offer a way to manipulate the transfer of quantum information. Every electron in a quantum dot has intrinsic magnetism, like a tiny bar magnet. Scientists call this “electron spin”—the magnetic moment associated with each electron—because each electron is a negatively charged particle that behaves as though it were rapidly spinning, and it is this effective motion that gives rise to the magnetism.

Electron spin is a promising candidate for transferring, storing, and processing information in quantum computing because it offers long coherence times and high gate fidelities and is compatible with advanced semiconductor manufacturing techniques. The coherence time of a qubit is the time before the quantum information is lost due to interactions with a noisy environment; long coherence means a longer time to perform computations. High gate fidelity means that the quantum operation researchers are trying to perform is performed exactly as they want.

One major challenge in using silicon quantum dots as qubits, however, is controlling electron spin.

Controlling electron spin

The standard method for controlling electron spin is electron spin resonance (ESR), which involves applying oscillating radiofrequency magnetic fields to the qubits. However, this method has several limitations, including the need to generate and precisely control the oscillating magnetic fields in cryogenic environments, where most electron spin qubits are operated. Typically, to generate oscillating magnetic fields, researchers send a current through a wire, and this generates heat, which can disturb cryogenic environments.

Nichol and his colleagues outline a new method for controlling electron spin in silicon quantum dots that does not rely on oscillating electromagnetic fields. The method is based on a phenomenon called “spin-valley coupling,” which occurs when electrons in silicon quantum dots transition between different spin and valley states. While the spin state of an electron refers to its magnetic properties, the valley state refers to a different property related to the electron’s spatial profile.

The researchers apply a voltage pulse to harness the spin-valley coupling effect and manipulate the spin and valley states, controlling the electron spin.

“This method of coherent control, by spin-valley coupling, allows for universal control over qubits, and can be performed without the need of oscillating magnetic fields, which is a limitation of ESR,” Nichol says. “This allows us a new pathway for using silicon quantum dots to manipulate information in quantum computers.”



Journal

Nature Physics

DOI

10.1038/s41567-022-01870-y

Article Title

Coherent spin–valley oscillations in silicon

Article Publication Date

9-Jan-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Wayne State Researchers Pioneer Advances to Enhance Quality of Life for Individuals with Type 1 Diabetes

Wayne State Researchers Pioneer Advances to Enhance Quality of Life for Individuals with Type 1 Diabetes

August 27, 2025
Electrostatic Map Reveals Non-Covalent Metal–Organic Frameworks

Electrostatic Map Reveals Non-Covalent Metal–Organic Frameworks

August 27, 2025

Widespread Metal, Extraordinary Potential Unveiled

August 27, 2025

Electrons Unveil Their Handedness in Attosecond Flashes

August 27, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Optical Imaging Technique Promises Earlier Detection of Colorectal Cancer

Thioester-Driven RNA Aminoacylation Enables Peptide Synthesis

Exploring Frailty in Lung Transplantation: A Multidimensional Perspective

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.