• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Testing the waters

Bioengineer by Bioengineer
January 25, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: John Ulan for the University of Alberta

Researchers at the University of Alberta have conducted the first-ever study to use hydraulic fracturing fluids to examine effects on aquatic animals, such as rainbow trout. Horizontal drilling with high-volume hydraulic fracturing is a practice used globally for extracting oil and gas from tight reservoirs. Hydraulic fracturing uses large quantities of water and poses many environmental hazards in water, from contamination to spills.

A recent study examines the impact of the fluids produced by hydraulic fracturing on freshwater rainbow trout. Conducted in collaboration with industry partner Encana, the study was led by Daniel Alessi and Greg Goss in the Faculty of Science and Jon Martin in the Faculty of Medicine and Dentistry.

"The end goal is to understand the effects of the spills, should they occur, on native aquatic animals," explains Greg Goss, professor in the University of Alberta's Department of Biological Sciences. "This will help in both environmental policy, water treatment options for onsite water management and improved mitigation policy and programs."

This is the first-ever study to use fluids actually produced by hydraulic fracturing to examine their impact on aquatic animals. Comparable to many other species in northern countries, rainbow trout are a freshwater fish with cultural and economic implications, making them the ideal subject to study.

"To our knowledge, we are the only toxicology researchers with access to examine these fluids as they are actually produced in the well," says Daniel Alessi, assistant professor in the Department of Earth and Atmospheric Sciences. "We are fortunate enough to have a company such as EnCana provide us the fluids to perform this study as a means to improve their environmental stewardship."

In their study, they found that fluids produced by hydraulic fracturing have significant negative effects on rainbow trout, even at greater than 100 fold dilutions and these effects include oxidative stress, endocrine disruption, and biotransformation which may lead to longer term impacts on populations where spills have occurred.

The results provide a basis for both regulators and industry to develop policies and procedures that will help reduce the negative effects of spills, as well as ensure that the clean up of the zone of impact is done appropriately.

The team of researchers plan to conduct long-term studies to examine the potential effects of these hydraulic fracturing, fluids being present in a stream, mimicking the actual values present after a spill.

"We are only just starting to examine these effects and examine some of the other characteristics of spills," says Goss. "From here, we hope to inform industry, government and the public alike about the potential impacts of hydraulic fracturing, on our water and the animals who live there."

###

The paper, "Effects on Biotransformation, Oxidative Stress, and Endocrine Disruption in Rainbow Trout (Oncorhynchus mykiss) Exposed to Hydraulic Fracturing Flowback and Produced Water", was published in Environmental Science and Technology.

Media Contact

Jennifer Pascoe
[email protected]
780-492-8813
@ualberta

http://www.ualberta.ca

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Personalized Guide to Understanding and Reducing Chemicals

February 7, 2026

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

February 7, 2026

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

February 7, 2026

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Personalized Guide to Understanding and Reducing Chemicals

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.