• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Safety codes can lead to over-built bridges, higher building costs

Bioengineer by Bioengineer
January 25, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: UBC Okanagan

A recent study by researchers at UBC's Okanagan campus examined a variety of bridge types along with design requirements under the Canadian Highway Bridge Design Code. The study concludes that while bridges are being built to withstand the force of an earthquake — the bridges are being overbuilt and driving up unnecessary construction expenses.

At the design stage, engineers determine a bridge's seismic performance and predict damages — if an earthquake occurs–by calculating strains the material can withstand, explains UBC professor Shahria Alam. They must also make calculations for the probable post-earthquake functionality of the bridge.

"We've determined it's very unnecessary to design a structure with that much reinforcement," says Alam, the study's author. "The code calls for a lot of material and the size of the columns and beams are simply too large."

Alam, who teaches civil engineering at UBC's Okanagan campus, explains there are a lot of materials that go into bridges, and for years the common thought has been to add more steel reinforcement to make them stronger. However, his research and structural testing in his lab and on a bridge pier in the Lower Mainland, is telling a different story.

Under Canadian Highway Bridge Design Code, load, durability and seismic design — how movement during an earthquake will be dispersed within the structure so it will remain standing — are all part of the basics when bridges are planned.

"Public safety is the most important aspect and we have to build structures so they do not collapse during an earthquake," he says. "What we're saying now is that we should be building structures that not only save lives, but we should also be saving the structure itself."

As part of their research, Alam and his team have been testing shape memory alloy reinforced, and post-tensioned bridge piers, in the Applied Laboratory for Advanced Materials and Structures (ALAMS) on UBC's Okanagan campus. Alam's team tested the seismic performance of such structural elements.

"We've proposed target residual drift-based criteria for performance-based seismic design of bridges that have self-centering capability," says Alam. "It is very expensive to build a bridge to a certain standard, and then you cannot afford to demolish and replace it. Hence, new structural systems can be designed by following the proposed guideline. Thus, engineers can build almost damage free bridges even after a major earthquake."

###

The study related to seismic code was conducted by Alam and his student Qi Zhang in collaboration with MMM Group and was published in the Canadian Journal of Civil Engineering. The second study related to shape memory alloy reinforced bridge pier was co-authored by Alam and his former PhD student Muntasir Billah — now a bridge engineer with Parsons in Vancouver. The results were published in the Canadian Journal of Civil Engineering.

Watch a related video: https://youtu.be/wmo96WpuPek

Media Contact

Patty Wellborn
[email protected]
250-807-8463

http://ok.ubc.ca/welcome.html

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Exploring Water Absorption in Footballs: Leather vs. Synthetic

Exploring Water Absorption in Footballs: Leather vs. Synthetic

September 13, 2025
Grape and Olive Waste Transformed Into Asphalt Antioxidants

Grape and Olive Waste Transformed Into Asphalt Antioxidants

September 13, 2025

Enhancing Co-Composting: Quicklime Boosts Nutrient Recovery

September 13, 2025

Adverse Events in Asian Adults on Brivaracetam

September 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Water Absorption in Footballs: Leather vs. Synthetic

Grape and Olive Waste Transformed Into Asphalt Antioxidants

Enhancing Co-Composting: Quicklime Boosts Nutrient Recovery

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.