• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

More stable states of quantum computers

Bioengineer by Bioengineer
January 12, 2023
in Chemistry
Reading Time: 3 mins read
0
The properties of gralmonium qubits are determined by a small junction of 20 nanometers only, which acts like a magnifying glass for microscopic material defects. (Graphics: Dennis Rieger, KIT)
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Quantum computers can more rapidly process large amounts of data, because they carry out many computation steps in parallel. The information carrier of the quantum computer is a qubit. Qubits do not only possess the information of “0” and “1,” but also values in between. However, the difficulty consists in producing qubits that are small enough and can be switched quickly enough to execute quantum calculations. A very promising option are superconducting circuits. Superconductors are materials that have no electrical resistance at extremely low temperatures and, hence, conduct electrical current without any losses. This is important to maintain the quantum state of qubits and to connect them efficiently.

The properties of gralmonium qubits are determined by a small junction of 20 nanometers only, which acts like a magnifying glass for microscopic material defects. (Graphics: Dennis Rieger, KIT)

Credit: Graphics: Dennis Rieger, KIT

Quantum computers can more rapidly process large amounts of data, because they carry out many computation steps in parallel. The information carrier of the quantum computer is a qubit. Qubits do not only possess the information of “0” and “1,” but also values in between. However, the difficulty consists in producing qubits that are small enough and can be switched quickly enough to execute quantum calculations. A very promising option are superconducting circuits. Superconductors are materials that have no electrical resistance at extremely low temperatures and, hence, conduct electrical current without any losses. This is important to maintain the quantum state of qubits and to connect them efficiently.

 

Gralmonium Qubits: Superconducting and Sensitive

KIT researchers have now succeeded in developing novel, unconventional superconducting qubits. “The core of a superconducting qubit is a so-called Josephson junction that serves to store quantum information. Here, we made a crucial modification,” says Dr. Ioan M. Pop from KIT’s Institute for Quantum Materials and Technologies (IQMT). As a rule, such Josephson junctions for superconducting quantum bits are obtained by a thin oxide barrier separating two aluminum layers. “For our qubits, we use a single layer of granular aluminum, a superconductor made of aluminum grains of a few nanometers in size that are embedded in an oxide matrix,” Pop says. Then, the material self-structures in a three-dimensional network of Josephson junctions. “It is fascinating to see that all properties of our qubit are dominated by a very small junction of 20 nm only. Consequently, it acts like a magnifying glass of microscopic material defects in superconducting qubits and offers a promising option for improvement,” Simon Günzler, IQMT, adds.

 

Qubits Entirely Made of Granular Aluminum

The progress achieved by the team is based on a previously tested approach using so-called fluxonium qubits. Parts of this predecessor version were made of granular aluminum, others consisted of conventional aluminum. Now, the entire qubits are made of granular aluminum. “As if a quantum circuit would be cut out of a metal film. This results in entirely new opportunities for industrial production by etching processes and extended application of qubits, for example in strong magnetic fields,” says Dennis Rieger from KIT’s Physikalisches Institut.  

This invention is protected by a European patent. 

 

Original Publication

D. Rieger, S. Günzler, M. Spiecker, P. Paluch, P. Winkel, L. Hahn, J. K. Hohmann, A. Bacher, W. Wernsdorfer, and I. M. Pop: Granular Aluminium Nanojunction Fluxonium Qubit. Nature Materials, 2022. DOI: 10.1038/s41563-022-01417-9

https://www.nature.com/articles/s41563-022-01417-9

 

Details on KIT Materials Center: https://www.kit.edu/topics/materials.php

 

Being “The Research University in the Helmholtz Association”, KIT creates and imparts knowledge for the society and the environment. It is the objective to make significant contributions to the global challenges in the fields of energy, mobility, and information. For this, about 9,800 employees cooperate in a broad range of disciplines in natural sciences, engineering sciences, economics, and the humanities and social sciences. KIT prepares its 22,300 students for responsible tasks in society, industry, and science by offering research-based study programs. Innovation efforts at KIT build a bridge between important scientific findings and their application for the benefit of society, economic prosperity, and the preservation of our natural basis of life. KIT is one of the German universities of excellence.



DOI

10.1038/s41563-022-01417-9

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Granular aluminium nanojunction fluxonium qubit

Article Publication Date

8-Dec-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.