• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Into the blue: Progress in perovskite LEDs for deep-blue light

Bioengineer by Bioengineer
January 4, 2023
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The deep blue of your LED display is likely produced by indium gallium nitride (InGaN), a costly substance. In the field of LEDs, researchers are seeking alternatives in a type of perovskite known as quasi-2D Ruddlesden‒Popper perovskites (2D-RPPs). 2D-RPPs have excellent optoelectronic properties – ideal for LEDs. Although 2D-RPP-based LEDs have rapidly progressed in terms of performance, it is still challenging to demonstrate blue-emissive and color-pure LEDs.

Scanning electron microscopy image with digital photograph during operation (left) and transient absorption spectrum (right) of deep-blue emitting perovskite light-emitting diodes (LEDs) prepared by hot-antisolvent bathing.

Credit: J. Moon, Yonsei University.

The deep blue of your LED display is likely produced by indium gallium nitride (InGaN), a costly substance. In the field of LEDs, researchers are seeking alternatives in a type of perovskite known as quasi-2D Ruddlesden‒Popper perovskites (2D-RPPs). 2D-RPPs have excellent optoelectronic properties – ideal for LEDs. Although 2D-RPP-based LEDs have rapidly progressed in terms of performance, it is still challenging to demonstrate blue-emissive and color-pure LEDs.

Conventional fabrication processes for producing 2D-RPP films (e.g., hot-casting and antisolvent dripping) induce spatial segregation of the chemical species during the film crystallization. The resulting mixed perovskite phases evoke the emission from perovskite phase with a smaller bandgap, which hinders deep-blue emissions. A strategy capable of precisely controlling the phase evolution of the 2D-RPPs during crystallization is required to achieve deep-blue LEDs.

As reported in Advanced Photonics, researchers from Yonsei University and Sungkyunkwan University in Korea recently proposed a rapid crystallization method to manipulate the 2D perovskite phase evolution by controlling the crystallization kinetics for the fabrication of phase-pure 2D-RPPs, enabling deep-blue-emissive perovskite LEDs. When the as-spin-coated precursor wet film was submerged in a hot-bath of diethyl ether, immediate crystallization occurred, due to the rapid extraction of precursor solvent by diethyl ether. Extremely fast crystallization kinetics allowed all the chemical species to be randomly distributed throughout the film, successfully yielding highly phase-pure 2D-RPP crystals.

Steady-state photoluminescence and ultrafast transient absorption clearly revealed that rapid crystallization via hot-antisolvent bathing enables highly phase-pure 2D perovskite films with randomly oriented crystals. The random orientations of the 2D perovskite crystals enhanced charge transport and improved charge mobility to benefit device performance. The resulting deep-blue-emissive perovskite LEDs exhibited a maximum external quantum efficiency (EQE) of 0.63% with an emission wavelength centered at 437 nm. Prolonged stability of the unencapsulated PeLEDs was further confirmed with negligibly changed EL spectra, highly comparable to those of state-of-the-art devices.

According to senior author Jooho Moon, professor in the Department of Materials Science and Engineering at Yonsei University, “This work provides a novel approach to realize high performance and spectrally stable deep-blue perovskite LEDs. Our research suggests that the control of the crystallization kinetic is the key for the preparation of phase-pure 2D-RPP crystals, exhibiting great promise for addressing current challenges.”

Read the Gold Open Access article by G. Jang et al., “Rapid crystallization driven high-efficiency phase-pure deep-blue Ruddlesden‒Popper perovskite light-emitting diodes,” Adv. Photon. 5(1), 016001 (2023), doi 10.1117/1.AP.5.1.016001.



Journal

Advanced Photonics

DOI

10.1117/1.AP.5.1.016001

Article Title

Rapid crystallization-driven high-efficiency phase-pure deep-blue Ruddlesden–Popper perovskite light-emitting diodes

Article Publication Date

4-Jan-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Enhancing Pig Genomic Prediction with Integrated Data

Enhancing Pig Genomic Prediction with Integrated Data

August 27, 2025
Cyclosporine A: Beneficial or Harmful for Alzheimer’s?

Cyclosporine A: Beneficial or Harmful for Alzheimer’s?

August 27, 2025

Insect Diversity and Community Awareness in Semi-Arid Lands

August 27, 2025

COVID-19 and Alzheimer’s: Genetic Links and Brain Impact

August 27, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Organ Preservation: Who Accesses the Data?

Prioritizing Student Mental Health: Key Insights from BMES

Revolutionizing Plant Biology: Advances in Genome Synthesis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.