• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers discover solar wind-derived water in lunar soils

Bioengineer by Bioengineer
December 27, 2022
in Chemistry
Reading Time: 3 mins read
0
A schematic depiction of high-speed hydrogen ions injected from the solar surface into the lunar surface and enriched on the surface of lunar soil particles
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Due to its crucial importance in future space exploration, the abundance, distribution and origin of lunar surface water have received a lot of attention recently.

A schematic depiction of high-speed hydrogen ions injected from the solar surface into the lunar surface and enriched on the surface of lunar soil particles

Credit: Prof. LIN Yangting’s group

Due to its crucial importance in future space exploration, the abundance, distribution and origin of lunar surface water have received a lot of attention recently.

A joint research team from the National Space Science Center (NSSC) and the Institute of Geology and Geophysics (IGG), both affiliated with the Chinese Academy of Sciences (CAS), have discovered that the Chang’e-5 lunar soil grain rims have high concentrations of hydrogen and low deuterium/hydrogen (D/H) ratios that are consistent with lunar water originating from the solar wind (SW).

The findings were published in PNAS on Dec. 12, 2022.

The researchers conducted simulations on the preservation of hydrogen in lunar soils at different temperatures. They found that SW-originated water could be well preserved in the middle and high latitude regions of the lunar surface. “The polar lunar soils could contain more water than Chang’e-5 samples,” said Prof. LIN Yangting from IGG, corresponding author of the study.

Previous studies have proved that water (OH/H2O) on the lunar surface varies with latitude and time of day (up to 200 ppm). Such an obvious change implies a rapid desorption rate from the lunar surface.

In contrast to the six Apollo and three Luna missions, which all landed at low latitudes (8.97°S—26.13°N), the Chang’e-5 mission returned soil samples from a middle latitude location (43.06°N). In addition, the Chang’e-5 samples were collected from the youngest known lunar basalts (2.0 Ga) and the driest basaltic basement. Therefore, Chang’e-5 samples are key to addressing the spatial-temporal distribution and retention of SW-derived water in the lunar regolith.

On 17 lunar soil grains returned by the Chang’e-5 mission, the researchers took NanoSIMS depth-profiling measurements of hydrogen abundance and calculated deuterium/hydrogen ratios.

Results showed that the majority of the grain rims (topmost ~100 nm) exhibited high concentrations of hydrogen (1,116—2,516 ppm) with extremely low δD values (-908‰ to -992‰), implying an SW origin. Based on the grain size distribution of the lunar soils and their hydrogen content, the bulk SW-derived water content was estimated to be 46 ppm for the Chang’e-5 lunar soils, consistent with the remote sensing result.

Heating experiments on a subset of the grains demonstrated that the SW-implanted hydrogen could be preserved after burial. Using this information along with previous data, the researchers established a model of the dynamic equilibrium between the implantation and outgassing of SW-hydrogen in soil grains on the moon, revealing that temperature (latitude) plays a key role in the implantation and migration of hydrogen in lunar soils.

Using this model, they predicted an even higher abundance of hydrogen in the grain rims in the lunar polar regions. “This discovery is of great significance for the future utilization of water resources on the moon,” said Prof. LIN. “Also, through particle sorting and heating, it is relatively easy to exploit and use the water contained in the lunar soil.”



Journal

Proceedings of the National Academy of Sciences

DOI

10.1073/pnas.2214395119

Article Title

High abundance of solar wind-derived water in lunar soils from the middle latitude

Article Publication Date

12-Dec-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.