• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

What’s your poison?

Bioengineer by Bioengineer
December 13, 2022
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Each year, around 500,000 people in sub-Saharan Africa suffer from snake bites, causing an estimated 7,000 to 20,000 deaths. Many snake species native to the region, such as the feared black mamba, are classified as species of the highest medical importance by the World Health Organization. Using systematic approaches to better understand the composition and function of these snakes’ venoms is therefore a medical priority. 

Green Mamba

Credit: H. Krisp Wikimedia Commons

Each year, around 500,000 people in sub-Saharan Africa suffer from snake bites, causing an estimated 7,000 to 20,000 deaths. Many snake species native to the region, such as the feared black mamba, are classified as species of the highest medical importance by the World Health Organization. Using systematic approaches to better understand the composition and function of these snakes’ venoms is therefore a medical priority. 

The Center for Antibody Technologies headed by Professor Andreas Laustsen-Kiel (Technical University of Denmark) used high-throughput methods to systematically analyze and compare the protein compositions and functions of the venoms of the 26 medically most important snakes in sub-Saharan Africa. This article was published in the journal Gigascience.

The snakes investigated in the new study belong to two families, elapids – including, among others, the black and green mambas and the ring-necked spitting cobra, also called the rinkhals – and vipers such as the Puff adder and the Gaboon viper. 

The composition and function of snake venoms is complex and varies a lot from species to species. The authors describe a general pattern with elapid venoms containing large amounts of a class of proteins called “three finger toxins”, which act by blocking neuronal transmission or by killing cells; as well as phospholipases A2 (PLA2s), a class of enzymes that is found in many animal venoms. The viper venoms, on the other hand, are dominated by a different protein mix, including PLA2s, but also substantial quantities of other enzymes such as Snake Venom Metalloproteinases and Snake Venom Serine Proteinases.

Venom compositions of most of these snakes have been described before, but the venoms of two species – of Anchieta’s cobra (Naja anchietae) and of the white-bellied carpet viper (Echis leucogaster) – are characterized for the first time in the new GigaScience study. 

The major advance of the work, however, is the parallel processing of samples from 26 snakes in the same high-throughput pipeline; combined with a range of experimental approaches to functionally characterize many venoms in parallel, in a standardized setting. In contrast, previous studies on the venom compositions of snakes from sub-Sahara Africa have typically been performed in separate studies with only one or a handful of species each, and often with little or no data on functional aspects. The previous studies also used variable protocols, making it difficult to reconcile and compare data from different origins.

The new integrated approach demonstrated in the Gigascience article, including 26 snake species and a range of functional assays, provides a solid foundation for further studies of snake biology and the development of new antivenoms.



Journal

GigaScience

DOI

10.1093/gigascience/giac121

Method of Research

Experimental study

Subject of Research

Animals

Article Title

High-throughput proteomics and in vitro functional characterization of the 26 medically most important elapids and vipers from sub-Saharan Africa

Article Publication Date

12-Dec-2022

COI Statement

All authors declare they have no conflict of interest

Share12Tweet8Share2ShareShareShare2

Related Posts

Two Fish Species, Two Strategies: A Novel Model Unveils Insights into Working Memory

Two Fish Species, Two Strategies: A Novel Model Unveils Insights into Working Memory

August 28, 2025
Not All Calories Are Created Equal: How Ultra-Processed Foods Impact Men’s Health

Not All Calories Are Created Equal: How Ultra-Processed Foods Impact Men’s Health

August 28, 2025

Decades-Old Molecular Biology Mystery Uncovered: Cells Use a Molecular Stopwatch to Gauge RNA Tail Lengths

August 28, 2025

Exploring Genetic Diversity in Extra-Early Orange Maize

August 28, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Electric Transmission Value, Drivers in US Power Markets

MERIT Grant Secured to Advance HIV Cure Research

Revolutionary BiSTU Network Enhances PPG Waveform Prediction

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.