• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Transplants can save dying coral reefs, but genetically diverse donors are key, say researchers

Bioengineer by Bioengineer
December 13, 2022
in Biology
Reading Time: 5 mins read
0
Staghorn Coral Transplant
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Key points:

Staghorn Coral Transplant

Credit: Wyatt Million/USC Dornsife College of Letters, Arts and Sciences

Key points:

  • Climate change is decimating the worlds’ reefs.
  • Transplanting healthy coral onto dying reefs may save them.
  • Some transplanted corals seem to thrive while others fail, but researchers weren’t sure why.
  • A new study led by USC Dornsife scientists solves the mystery, revealing a path to successful transplants and rejuvenated reefs.

 

As the health of coral reefs continues to decline under the stress of climate change, researchers aim to rejuvenate failing reefs by transplanting healthy coral. Unfortunately, they’ve found mixed results, as some transplanted coral wither and die while others take root and thrive.

Why some transplanted coral, called “outplants,” flourish and others struggle or perish has remained a mystery, until now. A new study led by researchers at the USC Dornsife College of Letters, Arts and Sciences and published in the Proceedings of the National Academy of Sciences reveals the key to successful coral transplantation.

Solving the mystery is critical to restoring dying reefs with transplanted coral, says Carly Kenkel, Gabilan Assistant Professor of Biological Sciences at USC Dornsife and a corresponding author on the study. And saving reefs remains a global imperative.

According to a 2021 study, Earth has lost half of its coral reefs since 1950. This global devastation holds tragic potential: A billion people benefit from reef ecosystems, and the U.S. economy alone gains $3.4 billion per year from them through industries like fishing and tourism, according to the National Oceanic and Atmospheric Administration.

Is it the one or the many?

Kenkel’s transplant research centers on the critically endangered Caribbean staghorn coral, Acropora cervicornis.

Before the current study, scientists used different individual staghorn coral at various transplant sites and found some outplants fared better at some locations than others. But because they used different coral at different sites, they were unable to narrow down the reason for success or failure: Was it the environment, the coral or a combination of both?

“We didn’t know if the coral were performing poorly at some sites because the environment was poor, because the individual coral were poor performers, or because those individual coral just happened to be poor performers in that particular environment,” said Kenkel.

To find the answer, Kenkel and Wyatt Million, formerly a PhD student in Kenkel’s lab at USC Dornsife and first author on the study, reduced the number of variables involved. They used clones of just 10 staghorn individuals and transplanted specimens of each at nine well-understood reef sites in the Florida Keys. They then tracked the outplants’ survival, growth, shape and size at each location.

They found that both the coral and the environment mattered. No single clone proved strong across all environments; each site saw a different clone step up and adapt for success.

“This is very important information for reef restoration,” said Kenkel. “It means that the genetic diversity of coral transplants is going to be important for hedging our bets.” As researchers aim to restore reefs, they’ll want to use a variety of individuals to ensure at least one can adapt to the new home.

She likened the idea to investing: “Diversifying your portfolio is safer than betting big on one particular company because even if some companies lose money, others will win.”

Maximizing genetic diversity — rather than looking for one standout coral to save the day, as has been the trend among researchers — is a wiser approach, she said.

“On these reefs, diversifying coral outplants is safer than betting on one ’super coral’ to succeed. There will be winners and losers in every environment. And reefs are really dynamic; each environment can be really different from a coral’s perspective, and they’re going to be even more different as the climate continues to change.”

“Plastic coral”

The findings also mean scientists will want to focus on how adaptable individual coral can be to various environments, meaning how much an individual can change its shape, size and other characteristics in response to changing environmental factors on the reef.

This “plasticity” could affect the chances of long-term success of outplants over many generations as climate change continues.

“We found that some coral were more plastic than others, and the most plastic coral — those that were able to grow biggest when it made sense to be big at a particular site or stay smallest when that was a benefit — were actually the ones who survived the best on average,” Kenkel said.

Study first author Wyatt Million — formerly a PhD student in Kenkel’s lab and now a postdoc at Germany’s Justus Liebig University Giessen — warns that coral plasticity isn’t a substitute for addressing climate change at its roots, however.

“I’d like to emphasize that adaptive plasticity is not a magic bullet for coral and cannot replace the goal of reversing the effects of climate change if we hope to ensure the ultimate persistence of coral,” he said.

What’s next?

Kenkel’s team now aims to dig deeper into what gives coral its plasticity and how it might affect future transplant efforts.

“We’re going to be asking questions like, ‘Are there any downsides to a coral being more plastic?’ Maybe it doesn’t show up in their lifetime — maybe it affects their offspring or their ability to produce offspring,” Kenkel said.

They’ll also study how coral plasticity impacts the function of the whole reef as well as what’s happening at a cellular and molecular level to enable the coral to grow, an avenue Million finds particularly interesting.

“Perhaps the most pertinent next steps include identifying the genetic basis of this plasticity and whether it belongs to the animal host or the algal symbiont,” he said.

Coral have microscopic algae living within them in a relationship known as “symbiosis.” The algae provide the coral with food and other benefits in exchange for nutrients and a safe place to live.

Understanding the genetics of both organisms will help scientists predict how a coral’s plasticity might evolve over generations with changing climate conditions.

About the study

In addition to Kenkel and Million, researchers on the study include Maria Ruggeri and Sibelle O’Donnell of USC Dornsife; Erich Bartels of Mote Marine Laboratory; Trinity Conn of The Pennsylvania State University; and Cory Krediet of Eckerd College.

This research was supported by NOAA Coral Reef Conservation Program grant NA17NOS4820084 and private funding from the Alfred P. Sloan Foundation and Rose Hills Foundation.



Journal

Proceedings of the National Academy of Sciences

DOI

10.1073/pnas.2203925119

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Evidence for adaptive morphological plasticity in the Caribbean coral, Acropora cervicornis

Article Publication Date

28-Nov-2022

COI Statement

The authors declare no competing interest.

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.