• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Could insulin come in a pill? How a molecule that mimics insulin may advance diabetes research

Bioengineer by Bioengineer
December 11, 2022
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

WEHI researchers in Melbourne have answered a 100-year-old question in diabetes research: can a molecule different to insulin have the same effect? The findings provide important insights for the future development of an oral insulin pill.

Insulin-mimicking molecule bound to the insulin receptor

Credit: WEHI

WEHI researchers in Melbourne have answered a 100-year-old question in diabetes research: can a molecule different to insulin have the same effect? The findings provide important insights for the future development of an oral insulin pill.

The research team has visualised how a non-insulin molecule can mimic the role of insulin, a key hormone needed to control blood sugar levels.

The WEHI-led study opens new avenues for the development of drugs that could replace daily insulin injections for people with type 1 diabetes.

At a glance

  • Researchers have visualised precisely how an insulin-mimicking molecule reproduces the activity of insulin to regulate blood glucose levels
  • Study answers a century-old question of whether it is possible to replace insulin
  • Findings illuminate new opportunities for the development of oral insulin mimetics that may replace daily injections by type 1 diabetics

People with type 1 diabetes cannot produce insulin and require multiple daily insulin injections to keep their blood glucose levels in check.

The new research confirms that alternative molecules can be used to turn on blood glucose uptake, bypassing the need for insulin altogether.

The study, published in Nature Communications, was led by WEHI’s Dr Nicholas Kirk and Professor Mike Lawrence, in collaboration with researchers from Lilly, an American-based pharmaceutical company.

Why is there no insulin pill?

Dr Kirk said scientists have struggled to make insulin as a pill, because insulin is unstable and readily degraded by the body upon digestion.

“Since the discovery of insulin 100 years ago, the development of an insulin pill has been a dream for diabetes researchers but, after decades of trying, there has been little success,” he said.

The research has now accelerated dramatically with the development of cryo-electron microscopy (cryo EM), a new technology that can visualise complicated molecules in atomic detail, allowing researchers to generate 3D images (“blueprints”) of the insulin receptor rapidly.

“With cryo-EM, we can now directly compare how different molecules, including insulin, change the shape of the insulin receptor,” said Dr Kirk.

“Insulin’s interaction turns out to be far more complex than anyone predicted, with both insulin and its receptor changing shape dramatically as they partner up.”

Mimicking insulin with simple molecules

The new research shows how an insulin-mimicking molecule acts on the insulin receptor and turns it on, the first step in a pathway that directs cells to soak up glucose when the body’s sugar levels are too high.

The team performed intricate cryo-EM reconstructions to obtain blueprints of several molecules called “peptides” that are known to interact with the insulin receptor and hold it in the “active” position.

The cryo-EM experiments identified that one peptide that can bind to and activate the receptor in a manner similar to insulin.

“Insulin has evolved to hold the receptor carefully, like a hand bringing a pair of tongs together,” Dr Kirk said.

“The peptides we used work in pairs to activate the insulin receptor – like two hands grabbing the pair of tongs around the outside.”

While therapeutic outcomes are distant, the team’s discovery could lead to a drug to replace insulin, reducing the need for injections by diabetics.

“Scientists have had success replacing these kinds of mimetic molecules with drugs that can be taken as pills,” Dr Kirk said.

“It’s still a long road that will require further research, but it’s exciting to know that our discovery opens the door for oral treatments for type 1 diabetes.”

The study, “Activation of the human insulin receptor by non-insulin-related peptides”, is published in Nature Communications. The research was supported financially by Lilly.

WEHI authors: Nicholas Kirk, Mai Margetts and Mike Lawrence.



Journal

Nature Communications

DOI

10.1038/s41467-022-33315-8

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Activation of the human insulin receptor by non-insulin-related peptides

Share12Tweet8Share2ShareShareShare2

Related Posts

Examining Occupational Gaps and Cognitive Decline in Seniors

August 27, 2025

Thirst in Post-Surgery Children: A Cross-Sectional Study

August 27, 2025

Strategic Management of Mechanical Support in Cardiogenic Shock

August 27, 2025

Boosting Cartilage Regeneration with DNA-SF Hydrogel Organoids

August 27, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Examining Occupational Gaps and Cognitive Decline in Seniors

OLED-Driven Metasurfaces Enable Holographic Projections

Understanding Female-to-Female Aggression in Workspaces

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.