• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Astronomers observe intra-group light – the elusive glow between distant galaxies

Bioengineer by Bioengineer
November 24, 2022
in Chemistry
Reading Time: 4 mins read
0
IGL between galaxies 400138
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

An international team of astronomers have turned a new technique onto a group of galaxies and the faint light between them – known as ‘intra-group light’ – to characterise the stars that dwell there. 

IGL between galaxies 400138

Credit: Martínez-Lombilla et al./UNSW Sydney

An international team of astronomers have turned a new technique onto a group of galaxies and the faint light between them – known as ‘intra-group light’ – to characterise the stars that dwell there. 

Lead author of the study published in MNRAS, Dr Cristina Martínez-Lombilla from the School of Physics at UNSW Science, said “We know almost nothing about intra-group light. 

“The brightest parts of the intra-group light are ~50 times fainter than the darkest night sky on Earth. It is extremely hard to detect, even with the largest telescopes on Earth – or in space.” 

Using their sensitive technique, which eliminates light from all objects except that from the intra-group light, the researchers not only detected the intra-group light but were able to study and tell the story of the stars that populate it. 

“We analysed the properties of the intra-group stars – those stray stars between the galaxy groups. We looked at the age and abundance of the elements that composed them and then we compared those features with the stars still belonging to galaxy groups,” Dr Martínez-Lombilla said. 

“We found that the intra-group light is younger and less metal-rich than the surrounding galaxies.” 

Rebuilding the story of intra-group light 

Not only were the orphan stars in the intra-group light ‘anachronistic’ but they appeared to be of a different origin to their closest neighbours. The researchers found the character of the intra-group stars appeared similar to the nebulous ‘tail’ of a further away galaxy. 

The combination of these clues allowed the researchers to rebuild the history – the story – of the intra-group light and how its stars came to be gathered in their own stellar orphanage. 

“We think these individual stars were at some points stripped from their home galaxies and now they float freely, following the gravity of the group,” said Dr Martínez-Lombilla. “The stripping, called tidal stripping, is caused by the passage of massive satellite galaxies – similar to the Milky Way – that pull stars in their wake.” 

This is the first time the intra-group light of these galaxies has been observed. 

“Unveiling the quantity and origin of the intra-group light provides a fossil record of all the interactions a group of galaxies has undergone and provides a holistic view of the system’s interaction history,” Dr Martínez-Lombilla said. 

“Also, these events occurred a long time ago. The galaxies [we’re looking at] are so far away, that we’re observing them as they were 2.5 billion years ago. That is how long it takes for their light to reach us.” 

By observing events from a long time ago, in galaxies so far away, the researchers are contributing vital datapoints to the slow-burning evolution of cosmic events. 

Tailored image treatment procedure 

The researchers pioneered a unique technique to achieve this penetrating view. 

“We have developed a tailored image treatment procedure that allows us to analyse the faintest structures in the Universe,” said Dr Martínez-Lombilla. 

“It follows the standard steps for the study of faint structures in astronomical images – which implies 2D modelling and the removal of all light except that coming from the intra-group light. This includes all the bright stars in the images, the galaxies obscuring the intra-group light and a subtraction of the continuum emission from the sky. 

“What makes our technique different is that it is fully Python-based so it is very modular and easily applicable to different sets of data from different telescopes rather than being just useful for these images. 

“The most important outcome is that when studying very faint structures around galaxies, every step in the process counts and every undesirable light should be accounted for and removed. Otherwise, your measurements will be wrong. 

The techniques presented in this study are a pilot, encouraging future analyses of intra-group light, Dr Martínez-Lombilla said. 

“Our main long-term goal is to extend these results to a large sample of group of galaxies. Then we can look at statistics and find out the typical properties regarding the formation and evolution of the intra-group light and these extremely common systems of groups of galaxies. 

“This is key work for preparing the next generation of deep all-sky surveys such as those to be performed with the Euclid space telescope and the LSST with the Vera C. Rubin Observatory.” 

 

 

—ENDS—

Media Contact:

Jesse Hawley

UNSW Science | News and Content Coordinator

[email protected]

0422 537 392

Dr Cristina Martínez Lombilla, Postdoctoral Research Associate School of Physics, UNSW Sydney. Contact: Jesse Hawley



Journal

Monthly Notices of the Royal Astronomical Society

DOI

10.1093/mnras/stac3119

Method of Research

Imaging analysis

Subject of Research

Not applicable

Article Title

Galaxy and Mass Assembly (GAMA): Extended intra-group light in a group at = 0.2 from deep hyper-suprime cam images

Article Publication Date

24-Nov-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Evaluating Pediatric Emergency Care Quality in Ethiopia

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.