• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Having good friendships may make for a healthier gut microbiome

Bioengineer by Bioengineer
November 11, 2022
in Biology
Reading Time: 4 mins read
0
Grooming
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Social connections are essential for good health and wellbeing in social animals, such as ourselves and other primates. There is also increasing evidence that the gut microbiome – through the so-called ‘gut-brain axis’ – plays a key role in our physical and mental health and that bacteria can be transmitted socially, for example through touch. So how does social connectedness translate into the composition and diversity of the gut microbiome? That’s the topic of a new study in Frontiers in Microbiology on rhesus macaques, Macaca mulatta.

Grooming

Credit: Lauren Brent

Social connections are essential for good health and wellbeing in social animals, such as ourselves and other primates. There is also increasing evidence that the gut microbiome – through the so-called ‘gut-brain axis’ – plays a key role in our physical and mental health and that bacteria can be transmitted socially, for example through touch. So how does social connectedness translate into the composition and diversity of the gut microbiome? That’s the topic of a new study in Frontiers in Microbiology on rhesus macaques, Macaca mulatta.

Lead author Dr Katerina Johnson, a research associate at the Department of Experimental Psychology and the Department of Psychiatry of the University of Oxford, said: “Here we show that more sociable monkeys have a higher abundance of beneficial gut bacteria, and a lower abundance of potentially disease-causing bacteria.”

Monkey island

The scientists focused on a single social group (with 22 males and 16 females between the ages of six and 20 years) of rhesus macaques on the island of Cayo Santiago, off the eastern coast of Puerto Rico. Macaques originally only lived in North Africa and Asia. But in 1938, a founder population of 409 rhesus macaques was moved from India to Cayo Santiago. Today, more than 1,000 macaques live on the 15.2 hectare island, divided into several social groups. They range and forage freely, although their diet gets supplemented daily with monkey chow. Researchers do behavioral observations on the monkeys each year.

Between 2012 and 2013, the authors collected a total of 50 uncontaminated stool samples from this social group. As a measure of social connectedness, they used the time each monkey spent grooming or being groomed in 2012 and 2013, and his or her number of grooming partners.

Social grooming

Co-author Dr Karli Watson, from the Institute of Cognitive Science at the University of Colorado Boulder, explained: “Macaques are highly social animals and grooming is their main way of making and maintaining relationships, so grooming provides a good indicator of social interactions.”

Johnson, Watson et al. analyzed DNA sequence data from the stool samples to measure the composition and diversity of the gut microbial community, and looked at the relationship with social connectivity. They also took into account sex, age, season, and rank within the group’s hierarchy. They focused on microbes that have been repeatedly shown in to be either more or less abundant in people or rodents with autism-like symptoms (commonly accompanied by social disconnection) or which are socially deprived.

Sociable monkeys have more ‘good’ microbes

“Engagement in social interactions was positively related to the abundance of certain gut microbes with beneficial immunological functions, and negatively related to the abundance of potentially pathogenic members of the microbiota,” said co-author Dr Philip Burnet, a professor from the Department of Psychiatry at the University of Oxford.

For example, genera more abundant in the most sociable monkeys included Faecalibacterium and Prevotella. Conversely, the genus Streptococcus, which in humans can cause diseases such as strep throat and, pneumonia, was most abundant in less sociable monkeys.

“It is particularly striking that we find a strong positive relationship between the abundance of the gut microbe Faecalibacterium and how sociable the animals are. Faecalibacterium is well known for its potent anti-inflammatory properties and is associated with good health,” said Johnson.

Cause and effect?

But what drives the relationship between social connectedness and gut microbiome composition? Distinguishing between cause and effect isn’t easy.

“The relationship between social behavior and microbial abundances may be the direct result of social transmission of microbes, for example through grooming. It could also be an indirect effect, as monkeys with fewer friends may be more stressed, which then affects the abundance of these microbes. As well as behavior influencing the microbiome, we also know it is a reciprocal relationship, whereby the microbiome can in turn affect the brain and behavior,” said Johnson.

Co-author Dr Robin Dunbar, a professor from the Department of Experimental Psychology at the University of Oxford, said: “As our society is increasingly substituting online interactions for real-life ones, these important research findings underline the fact that as primates, we evolved not only in a social world but a microbial one as well.”



Journal

Frontiers in Microbiology

DOI

10.3389/fmicb.2022.1032495

Method of Research

Observational study

Subject of Research

Animals

Article Title

Sociability in a non-captive macaque population is associated with beneficial gut bacteria

Article Publication Date

11-Nov-2022

COI Statement

The authors declare that the research was conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict of interest

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Risk Assessment of PAHs in Korean Sesame Oil

November 3, 2025
Sex Differences Unveiled in Hamster Hypertension Study

Sex Differences Unveiled in Hamster Hypertension Study

November 3, 2025

AI Misuse in Stem Cell Research: A Comparative Study

November 3, 2025

Modular High-Throughput Tools Boost Chlamydomonas Chloroplast Research

November 3, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1296 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI-Driven Solutions for Landscape Preservation and Management

From Component Failure to Systemic Infrastructure Resilience

Echocardiography for Assessing Heart Health in Piglets

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.