• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, July 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

A new way of fabricating high-efficiency diffraction gratings for astronomical spectroscopy

Bioengineer by Bioengineer
November 10, 2022
in Science News
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Today, astronomers seek to observe the faintest and most distant objects possible. Extremely Large Telescopes (ELTs), with apertures in the order of several dozen meters, are the next generation facilities to do so. However, building larger telescopes is only one part of the equation. The other part is the capability of detecting the gathered photons in the most efficient way possible. This is where making all other optical components in astronomical instruments more efficient becomes crucial. One essential component used in modern astronomical science is the diffraction grating. Its role is to spatially spread incoming light into its constituent frequencies, similar to how a glass prism does. Thanks to a precisely engineered structure that leverages the wave-like nature of photons, diffraction gratings can separate light of different wavelengths with very high resolution. When coupled with a telescope and a spectrometer, gratings allow scientists to analyze the spectral properties of celestial bodies.

Visual demonstration of the performance of the diffraction grating.

Credit: The Authors, doi 10.1117/1.JATIS.8.4.045002

Today, astronomers seek to observe the faintest and most distant objects possible. Extremely Large Telescopes (ELTs), with apertures in the order of several dozen meters, are the next generation facilities to do so. However, building larger telescopes is only one part of the equation. The other part is the capability of detecting the gathered photons in the most efficient way possible. This is where making all other optical components in astronomical instruments more efficient becomes crucial. One essential component used in modern astronomical science is the diffraction grating. Its role is to spatially spread incoming light into its constituent frequencies, similar to how a glass prism does. Thanks to a precisely engineered structure that leverages the wave-like nature of photons, diffraction gratings can separate light of different wavelengths with very high resolution. When coupled with a telescope and a spectrometer, gratings allow scientists to analyze the spectral properties of celestial bodies.

Motivated by the somewhat stagnant progress made in grating technology over the past decade, researchers Hanshin Lee of the University of Texas at Austin and Menelaos K. Poutous of the University of North Carolina at Charlotte, USA, focused on a completely different way of fabricating diffraction gratings. In their paper recently published in the Journal of Astronomical Telescopes, Instruments, and Systems, they report their success on manufacturing proof-of-concept high-efficiency diffraction gratings using reactive ion-plasma etching (RIPLE), a plasma-based manufacturing technology normally used for semiconductors.

Put simply, the RIPLE process used in this study involves “drawing” (using a high-precision electron beam) the desired grating pattern onto a chrome masking layer placed atop a quartz substrate. The grating pattern is then carved directly onto the quartz substrate using chemically reactive plasma; the chrome mask acts as a shield and the plasma only eats away at the exposed regions.

After fine tuning various parameters of the process through theoretical calculations, simulations, and experimental trial and error, the researchers managed to produce first-order diffraction gratings with very precise nano-scale structures. This translated to a near-theoretical unpolarized diffraction efficiency, reaching 94.3% at its peak and staying over 70% across a wavelength range broader than 200 nm. “This type of performance has been only rarely achieved in diffraction gratings used for astronomy, where every bit of efficiency gain really matters due to photon starvation,” said Lee.

Another advantage of using the RIPLE process to produce diffraction gratings is that the grating structure is embedded directly into the glass substrate, which means that they share the same material characteristics. “Our gratings can be very robust optically, thermally, and mechanically, which makes them ideal for harsh environments, such as those found in space observatories and cryogenic systems,” said Poutous, “This allows for their application in a broad range of scientific and engineering spectroscopic measurements.”  

Overall, the results of this study showcase the potential of the RIPLE process to revolutionize the way in which diffraction gratings are fabricated. The researchers are optimistic about the future use of such high-efficiency gratings in the upcoming era of ground-based ELTs with apertures over of 30 meters. With any luck, these gratings will be instrumental for astronomers to observe extremely faint objects far out in space in upcoming years.

Read the Gold Open Access paper by Hanshin and Poutous, “Reactive ion plasma etched surface relief gratings for low/medium/high resolution spectroscopy in astronomy,” J. Astron. Telesc. Instrum. Syst. 8(4) 045002 2022, doi 10.1117/1.JATIS.8.4.045002.



Journal

Journal of Astronomical Telescopes Instruments and Systems

DOI

10.1117/1.JATIS.8.4.045002

Article Title

Reactive ion plasma etched surface relief gratings for low/medium/high resolution spectroscopy in astronomy

Article Publication Date

28-Oct-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

July 20, 2025

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

July 20, 2025

Pathology Multiplexing Revolutionizes Disease Mapping

July 20, 2025

Single-Cell Atlas Links Chemokines to Type 2 Diabetes

July 20, 2025

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    43 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.