• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Sensing platform for studying in vitro vascular systems opens possibilities for drug testing

Bioengineer by Bioengineer
November 8, 2022
in Biology
Reading Time: 3 mins read
0
Figure 1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The costliness of drug development and the limitations of studying physiological processes in the lab are two separate scientific issues that may share the same solution.

Figure 1

Credit: Hitoshi Shiku

The costliness of drug development and the limitations of studying physiological processes in the lab are two separate scientific issues that may share the same solution.

Microphysical systems (MPSs) are in vitro platforms made up of cells in a microenvironment that closely mimics that found in the body, allowing scientists to recreate the conditions of tissues found within the body for both further elucidation of biological conditions and systems and for applications such as testing drugs in a more precise model than animal testing allows. However, the advancements that MPSs could provide have been limited up to this point by an inability to accurately record exactly what is happening at a cellular level. Now, a team of scientists has developed an electrochemical sensing platform that could solve this issue.

The results were published in Biosensors and Bioelectronics on October 29, 2022.

“Recent bioengineering techniques have realized a construction of tissue model integrated with a perfusable vascular network,” said corresponding author Yuji Nashimoto, formally of the Frontier Research Institute for Interdisciplinary Sciences at Tohoku University, now at Tokyo Medical and Dental University. “However, to utilize the models as drug screening tools, we need biosensors to monitor their functions in real-time, which until now were lacking. This study developed new electrochemical sensing platform to monitor the vascularized tissue model.”

The team identified electrochemical sensors as ideal for cell functionality readouts because of their low invasiveness, real-time detection and high sensitivity for in vitro culture platforms. Integrating electrochemical sensors into MPSs, however, has been difficult because of their incompatibility with microfluidic devices, according to the researchers.

The researchers were able to integrate their sensing platform for 3D cultured cells with a perfusable vascular network – an engineered vascular system that includes the passage of fluids through it – to measure oxygen metabolism in 3D tissues with vascular flow that mimics that in the human body in real-time.

This successful integration was achieved in part by designing the system to have an open top and a lower layer with five channels for culturing the vascular network and an upper layer that was used for both culturing 3D cultured cells and for oxygen metabolism analysis. The two layers were separated by a thin membrane.

The researchers tested the platform with human lung fibroblast spheroids. They then applied it to a cancer organoid and evaluated the oxygen metabolism changes during drug administration through the vascular network. The results showed that their sensors were successfully integrated into the system to provide the desired accurate measurements.

“We found that the platform could integrate a perfusable vascular network with 3D cultured cells, and the electrochemical sensor could detect the change in oxygen metabolism in a quantitative, non-invasive and real-time manner,” said corresponding author Hitoshi Shiku of the Graduate School of Engineering and of the Graduate School of Environmental Studies, both at Tohoku University. “Biosensors are very important tools to realize more physiological drug screening. Our research group has developed various sensors for the purpose. We continue to expand the detectable molecules and to develop more robust and high-throughput sensors.”

According to the researchers, future studies should include ways to address the changes of the spheroid and organoid during device culture as well as the development of a perfusable vascular network in an even more controlled environment than currently possible. While the researchers identified the next steps for future studies, the results of this study hold promise for monitoring perfusable vascular networks for drug testing purposes in a way that was not previously achieved.

“This study developed oxygen metabolism analysis for the vascularized tissue model,” Shiku said. “In the future, the detectable molecules should be expanded, and the signal-to-noise ratio should be improved.”



DOI

10.1016/j.bios.2022.114808

Article Title

Electrochemical sensing of oxygen metabolism for a three-dimensional cultured model with biomimetic vascular flow

Article Publication Date

29-Oct-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Evaluating Pediatric Emergency Care Quality in Ethiopia

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.