• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New design strategy for longer lasting batteries

Bioengineer by Bioengineer
January 23, 2017
in Science News
Reading Time: 3 mins read
1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

It's always exciting to bring home a new smartphone that seems to do anything, but it can be all downhill from there. With every charge and discharge cycle, the device's battery capacity lowers a little bit more — eventually rendering the device completely useless.

"Why does this degradation occur? In some cases, we know; in other cases, we don't," said Northwestern Engineering's Christopher Wolverton. "But, in many cases, something probably happened to the cathode."

Wolverton, professor of materials science and engineering in Northwestern's McCormick School of Engineering, has developed a new computational design strategy that can pinpoint optimal materials with which to coat the cathode in lithium-ion batteries, protecting it from degradation and ultimately extending the battery's — and device's — life.

The cathode, which holds the battery's lithium ions when it is discharged, is typically a compound containing lithium, a transition metal, and oxygen. Batteries also contain an electrolyte, which is a transport medium for the lithium ions as they move between the cathode and the anode, which holds the lithium when the battery is charged. When the electrolyte decomposes, it can release hydrofluoric acid, a highly reactive substance that can attack the cathode. Researchers hypothesize this could be one reason why the battery loses capacity over time.

"A coating could serve multiple functions: it could provide a barrier around the cathode, preventing attack from hydrofluoric acid," Wolverton said. "Or a coating could preferentially react with the hydrofluoric acid, so there's none left to react with the cathode."

Partially supported by The Dow Chemical Company and US Department of Energy, Wolverton's design strategy and results were described in a recent issue of Nature Communications. Muratahan Aykol, a former graduate student in Wolverton's laboratory, was the paper's first author.

Wolverton previously developed the ever-growing Open Quantum Materials Database (OQMD), which was essential during his group's quest to find cathode coating materials. With information on more than 470,000 compounds, the OQMD is one of the world's largest materials databases, is open to the public, and can be downloaded online. Wolverton's group designed a way to screen through the database's materials that could be potential barriers to or scavengers of hydrofluoric acid. The group ultimately identified and ranked 30 top candidates, one of which the Dow Chemical Company has experimentally tested to discover that the coating did successfully prevent battery degradation.

"Having a massive database at hand allowed us to find the products of very complex, previously unexplored chemical reactions that determine the coating's effectiveness," said Aykol, who is now a postdoctoral fellow at Lawrence Berkeley National Laboratory. "Not only can we unveil a list of promising functional coatings, but we are helping our experimental colleagues target their resources to the best candidates."

While searching for cathode coatings is not a new venture, it has been an historically clumsy one. Researchers currently explore potential coating materials largely through trial-and-error, which can be a slow and limited process. Exploring every material and combination of materials can result in millions, or even billions, of possibilities — far too many to test experimentally.

"There has never really been a design strategy for these coating materials," Wolverton said. "Computationally, we can quickly screen the vast landscape of possible material combinations to pinpoint 25 compounds that are potentially very promising. Now, 25 is a more manageable number that you could test experimentally."

Wolverton said this design strategy extends beyond developing better batteries. It also aims to fulfill the vision of the Materials Genome Initiative, established by President Barack Obama in 2011 to help accelerate the discovery, development, and deployment of new materials.

"These kinds of databases and computational approaches, in principle, are not limited to batteries," Wolverton said. "We are using computation to help design many types of materials."

###

Media Contact

Megan Fellman
[email protected]
847-491-3115
@northwesternu

http://www.northwestern.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.