• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Ambrosia beetles breed and maintain their own food fungi

Bioengineer by Bioengineer
November 2, 2022
in Biology
Reading Time: 4 mins read
0
Ambrosia beetles breed and maintain their own food fungi
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Ambrosia beetles practice active agriculture: A bark beetle species breeds and cultivates food fungi in its nests and ensures that so-called weed fungi spread less. This has now been experimentally demonstrated for the first time by biologist Janina Diehl from Freiburg. She is a doctoral student under Prof. Dr. Peter Biedermann, Professor of Forest Entomology and Forest Protection at the University of Freiburg. Diehl examined laboratory fungal gardens of the fruit-tree pinhole borer (Xyleborinus saxesenii), which belongs to the ambrosia beetles and is found in many native parks and gardens with old trees. She found that the beetles are actively influencing the composition of their fungal gardens. The research findings have just been published in Proceedings of the Royal Society B.

Ambrosia beetles breed and maintain their own food fungi

Credit: Gernot Kunz

Ambrosia beetles practice active agriculture: A bark beetle species breeds and cultivates food fungi in its nests and ensures that so-called weed fungi spread less. This has now been experimentally demonstrated for the first time by biologist Janina Diehl from Freiburg. She is a doctoral student under Prof. Dr. Peter Biedermann, Professor of Forest Entomology and Forest Protection at the University of Freiburg. Diehl examined laboratory fungal gardens of the fruit-tree pinhole borer (Xyleborinus saxesenii), which belongs to the ambrosia beetles and is found in many native parks and gardens with old trees. She found that the beetles are actively influencing the composition of their fungal gardens. The research findings have just been published in Proceedings of the Royal Society B.

Fungal coatings in wooden tunnels

Ambrosia beetles feed on special fungal coatings that grow in the tunnels they bore into old wood. To early naturalists, these coverings seemed like divine ambrosia, which is how the beetles got their name. Due to their social and hygienic behavior, it has long been assumed that they actively care for their fungi, but so far, such agricultural abilities have only been demonstrated in some termites and leafcutter ants.

Genetic analysis of fungus gardens

Diehl has now also succeeded in doing this for ambrosia beetles: In the laboratory, she had mother beetles of the little wood borer establish nests with offspring, in which the typical fungal gardens formed. She then removed the nurturing individuals from some of the nests and left them in others. Genetic analysis of bacterial and fungal communities of the fungal gardens after 40 days showed that the presence of the beetles had greatly altered the fungal community.

“You might have expected there to be fewer food fungi in the nests with beetles because they were being eaten, but in fact, the opposite was true; here the fungal composition was clearly shifted toward food fungi,” says Diehl. In the nests without nurturing beetles, on the other hand, the proportion of weed fungi was significantly higher. The composition of the bacteria also differed.

Beetles probably use antibiotic-forming bacteria

“These results support the existence of active farming in ambrosia beetles, although the exact mechanisms controlling the fungal community need further investigation,” adds Biedermann. He says there is evidence that the beetles use specific bacteria that produce antibiotic substances. These, in turn, could inhibit the growth of the weed fungi.

Social behavior probably also plays an important role; the entire group of beetles in the nest, including the larvae, work together to care for the fungi. This creates a close symbiosis between beetles and fungi: “Each ambrosia beetle species has its own food fungus. Neither can survive without the other.”

60 million years of experience

Economically relevant bark beetles, such as the spruce bark beetle (Ips typographus), also have similar symbioses with fungi, and understanding them could help control the beetles better in the future. Further research into how exactly ambrosia beetles suppress the growth of weed fungi could also provide worthwhile insights for human agriculture, which is struggling with resistance, for example, says Biedermann. “It’s highly exciting for us to see how nature has been doing this for 60 million years. Presumably, we humans can still learn something from these mechanisms.”

For more information, visit www.forest-entomology.com

Overview of facts:

  • Original publication: Diehl J.M.C., Kowallik V, Keller A, Biedermann P.H.W. (2022), First experimental evidence for active farming in ambrosia beetles and strong heredity of garden microbiomes. Proceedings of the Royal Society B. 289: 20221458. DOI: https://doi.org/10.1098/rspb.2022.1458
  • Janina Diehl’s study was supported by the Emmy Noether Programme through the German Research Foundation (DFG).
  • Prof. Dr. Peter Biedermann is Professor of Forest Entomology and Forest Protection at the University of Freiburg. His research interests include bark beetles, symbioses between insects and microorganisms, especially fungi, and the social behavior of insects. Janina Diehl is a PhD student at the University of Freiburg

Film: Social behaviour of the ambrosia beetle Xyleborinus saxesenii  
https://youtu.be/Jjj_QTRIt2A

 

Contact:
Prof. Dr. Peter Biedermann
Institute of Forest Sciences
University of Freiburg
Tel.: 0761/203-54112
e-mail: [email protected]

Thomas Goebel
Office of University and Science Communications
University of Freiburg
e-mail: [email protected]



Journal

Proceedings of the Royal Society B Biological Sciences

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Personalized Guide to Understanding and Reducing Chemicals

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.