• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

ANU scientists use deep planetary scan to confirm Martian core

Bioengineer by Bioengineer
October 27, 2022
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Seismologists from The Australian National University (ANU) have developed a new method to scan the deep interior of planets in our solar system to confirm whether they have a core at the heart of their existence.   

An illustration of the Martian interior

Credit: Credit: Dr Sheng Wang and Professor Hrvoje Tkalčić/ANU

Seismologists from The Australian National University (ANU) have developed a new method to scan the deep interior of planets in our solar system to confirm whether they have a core at the heart of their existence.   

The scanning method, which works in a similar way to an ultrasound scan using sound waves to generate images of a patient’s body, requires only a single seismometer on a planet’s surface in order to work. It can also be used to confirm the size of a planet’s core. The research is published in Nature Astronomy.   

Using the ANU model to scan the entirety of Mars’ interior, the researchers confirmed the Red Planet has a large core at its centre – a theory first confirmed by a team of scientists in 2021.  

Study co-author Professor Hrvoje Tkalčić, from ANU, said based on data collected using the ANU technique, the researchers determined that the Martian core, which is smaller than Earth’s, is about 3,620 kilometres in diameter.  

“Our research presents an innovative method using a single instrument to scan the interior of any planet in a way that’s never been done before,” he said.    

Confirming the existence of a planetary core, which the researchers refer to as the “engine room” of all planets, can help scientists learn more about a planet’s past and evolution. It can also help scientists determine at what point in a planet’s history a magnetic field formed and ceased to exist.  

The core plays an active role in sustaining a planet’s magnetic field. In the case of Mars, it could help explain why, unlike Earth, the Red Planet no longer has a magnetic field – something that is critical to sustaining all life forms.    

“Modelling suggests that the Martian core is liquid and while it is made up of mostly iron and nickel, it could also contain traces of lighter elements such as hydrogen and sulphur. These elements can alter the ability of the core to transport heat,” lead author Dr Sheng Wang, who is also from ANU, said.  

“A magnetic field is important because it shields us from cosmic radiation, which is why life on Earth is possible.” 

Using a single seismometer on Mars’ surface, the ANU team measured specific types of seismic waves. The seismic waves, which were triggered by marsquakes, give off a spectrum of signals, or “echoes”, that change over time as they reverberate throughout the Martian interior.   

These seismic waves pierce through and bounce off the Martian core.  

Professor Tkalčić said researchers are interested in the “late” and “weaker” signals that can survive hours after they are emitted from quakes, meteoroid impacts and other sources.   

“Although these late signals appear to be noisy and not useful, the similarity between these weak signals recorded at various locations on Mars manifests itself as a new signal that reveals the presence of a large core in the Red Planet’s heart,” Professor Tkalčić said.  

“We can determine how far these seismic waves travel to reach the Martian core but also the speed at which they travel through Mars’ interior. This data helps us make estimations about the size of Mars’ core.”  

The researchers say their method of using a single seismometer to confirm the presence of a planetary core is also a “cost-effective solution”.  
 
“There is a single seismic station on Mars. There were four of them on the Moon in 1970s. The situation of having a limited number of instruments is unlikely to change in the coming decades or even this century due to high cost,” Dr Wang said. 

“We need an approach right now to use only a single seismometer to study planetary interiors.” 

The researchers hope this new ANU-developed technique involving a single seismometer could be used to help scientists learn more about our other planetary neighbours, including the moon.  

“The US and China plan to send seismometers to the moon, and Australia also has ambitions to participate in future missions, so there’s potential for further studies using new and more sophisticated instruments,” Professor Tkalčić said.   

Dr Wang said: “Although there are many studies on planetary cores, the images we have of planetary interiors are still very blurry. But with new instruments and methods like ours we’ll be able to get sharper images which will help us answer questions such as how big the cores are and whether they take a solid or liquid form.  

“Our method could even be used to analyse the Jupiter moons and the outer solar system planets that are solid.”  

To carry out their research, ANU scientists used data collected from a seismometer attached to NASA’s InSight lander, which has been collecting information about marsquakes, Martian weather and the planet’s interior since touching down on Mars in 2018.    



Journal

Nature Astronomy

DOI

10.1038/s41550-022-01796-8

Article Title

Scanning for planetary cores with single-receiver intersource correlations

Article Publication Date

27-Oct-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Colorless Solar Windows: Revolutionizing Architecture into Clean Energy Generators

Colorless Solar Windows: Revolutionizing Architecture into Clean Energy Generators

September 3, 2025
Label-Free Technique Reveals Biomolecular Condensate Composition

Label-Free Technique Reveals Biomolecular Condensate Composition

September 3, 2025

Bacteria That Illuminate Microplastic Pollution

September 3, 2025

Polyamines: Unraveling Their Role from Longevity to Cancer

September 3, 2025

POPULAR NEWS

  • Needlestick Injury Rates in Nurses and Students in Pakistan

    297 shares
    Share 119 Tweet 74
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    118 shares
    Share 47 Tweet 30

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Matrix Method Enhances Incomplete Multigranulation Three-Way Regions

Unlocking Value: Extracting Compounds from Spent Coffee

Increased Extracellular BAG3 Marks Early Systemic Sclerosis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.