• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New research rewrites the evolutionary story of gills

Bioengineer by Bioengineer
October 19, 2022
in Biology
Reading Time: 3 mins read
0
Evolution of gills
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Gills are best known for helping most fish species breathe underwater. But less well known is the fact gills regulate the salt and pH balance of fishes’ blood, a vital role played by the kidneys in other animals. Collectively known as ion regulation, this lesser-known gill function has been traditionally thought to have evolved in tandem with breathing.

Evolution of gills

Credit: Rashpal Dhillon, Rush Studio.

Gills are best known for helping most fish species breathe underwater. But less well known is the fact gills regulate the salt and pH balance of fishes’ blood, a vital role played by the kidneys in other animals. Collectively known as ion regulation, this lesser-known gill function has been traditionally thought to have evolved in tandem with breathing.

But surprising new research published in Nature is adding a new, early chapter to the evolutionary story of gills.

“Our work suggests that the early, simplified gills of our worm-like ancestors played an important role in ion regulation. And that role might have originated as early as the very inception of gills, well before they played any role in breathing,” says Dr. Michael Sackville, a zoologist who led the study while with the University of British Columbia (UBC).

“This really does flip the script on our understanding of how gills and gill function evolved.” 

The evolution of gills and lungs has fascinated biologists, including Darwin, for more than 100 years. Prior to this study, gills were thought to be first used for breathing and ion regulation near the very beginning of vertebrate life. In this traditional timeline, these two functions shifted from the skin to the gills in tandem, helping vertebrates transition from small, worm-like creatures to larger, active fishes. This transition from “small and wormy” to “big and fishy” is an iconic event in vertebrate evolution.

The study traced the evolutionary journey of gills by comparing three animals that are alive today, but belong to different lineages: lampreys, which are vertebrates, and amphioxus and acorn worms, which are close relatives of vertebrates. The researchers assumed that any gill functions shared between the animals were inherited from a common ancestor, which is believed to be when simple gills first appeared well over 500 million years ago.

“We found that gills were used for breathing in only our vertebrate representative, and only with increasing body size and activity,” says Dr. Colin Brauner, a UBC zoologist and senior author on the paper. 

“But we found ion regulating cells in the gills of all three of our animals. This allowed us to trace the origin of ion regulation at gills all the way back to early deuterostome animals, when very simple gill structures are thought to have first evolved. The finding supports the classic story that gills were first used for breathing in early vertebrates, but adds an exciting new, earlier chapter to the story, clearly worthy of further study.”

The study was conducted in collaboration with researchers at the University of Montreal and Cambridge University, and funded by the Natural Sciences and Engineering Council of Canada and Royal Society.



Journal

Nature

DOI

10.1038/s41586-022-05331-7

Method of Research

Observational study

Subject of Research

Animals

Article Title

Ion regulation at gills precedes gas exchange and the origin of vertebrates

Article Publication Date

19-Oct-2022

COI Statement

We declare we have no competing interests.

Share12Tweet8Share2ShareShareShare2

Related Posts

Phylogenomics Merges Mameliella and Maliponia into Antarctobacter

Phylogenomics Merges Mameliella and Maliponia into Antarctobacter

November 2, 2025
Overcoming Batch Effects in Single-Cell RNA-seq Datasets

Overcoming Batch Effects in Single-Cell RNA-seq Datasets

November 2, 2025

Unraveling CpG Island Methylation Through Read Bias Analysis

November 2, 2025

Unraveling Resistance Genes in Photorhabdus Bacteria

November 2, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1296 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Upward Bullying in China’s Nurse Managers

Quantum Network Entanglement Verified Without Measurement Devices

Exploring Non-Cavity Modes in Micropillar Bragg Microcavities

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.