• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

SwRI scientists compile Cassini’s unique observations of Saturn’s rings

Bioengineer by Bioengineer
October 18, 2022
in Chemistry
Reading Time: 4 mins read
0
Cassini Saturn image
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

SAN ANTONIO — Oct. 18, 2022 — Southwest Research Institute scientists have compiled 41 solar occultation observations of Saturn’s rings from the Cassini mission. The compilation, published recently in the scientific journal Icarus, will inform future investigations of the particle size distribution and composition of Saturn’s rings, key elements to understanding their formation and evolution.

“For nearly two decades, NASA’s Cassini spacecraft shared the wonders of Saturn and its family of icy moons and signature rings, but we still don’t definitively know the origins of the ring system,” said Dr. Stephanie Jarmak, a researcher in the SwRI Space Science Division. “Evidence indicates that the rings are relatively young and could have formed from the destruction of an icy satellite or a comet. However, to support any one origin theory, we need to have a good idea of the size of particles making up the rings.”

Cassini’s Ultraviolet Imaging Spectrograph (UVIS) was uniquely sensitive to some of the smallest ring particles, particularly with the observations it made in the extreme ultraviolet wavelength.

To determine the size of the ring particles, UVIS observed them when the instrument was pointed at the Sun, looking through the rings in what is known as a solar occultation. Ring particles partially blocked the path of the light, providing a direct measurement of the optical depth, a key parameter for determining the size and composition of the ring particles.

“Given the wavelength of the light coming from the Sun, these observations gave us insight into the smallest particle sizes with Saturn’s rings,” Jarmak said. “UVIS can detect dust particles at the micron level, helping us understand the origin, collisional activity and destruction of the ring particles within the system.”

The compilation also delves into the variations in the optical depth of occultation observations, which can help determine particle size and composition. During an occultation, light emitted by a background source, such as the Sun, is absorbed and scattered by the particles in the light’s path. The amount of light blocked by ring particles provides a direct measurement of the ring optical depth.

Including optical depth is vital to understanding the structure of the rings. The research measured the optical depth as a function of the viewing geometry, which refers to the observation angles of the ring system with respect to the Cassini spacecraft. As light passing through the rings changes at various angles, scientists can form a picture of the rings’ structures.

“Ring systems around giant planets also provide test beds for investigating fundamental physical properties and processes in our solar system in general,” Jarmak said. “These particles are thought to result from objects colliding and forming in a disk and building up larger particles. Understanding how they form these ring systems could help us understand how planets form as well.”

The paper “Solar occultation observations of Saturn’s rings with Cassini UVIS” appears in Icarus: https://doi.org/10.1016/j.icarus.2022.115237.

For more information, visit https://www.swri.org/planetary-science.

Cassini Saturn image

Credit: NASA/JPL-Caltech/SSI/Cornell

SAN ANTONIO — Oct. 18, 2022 — Southwest Research Institute scientists have compiled 41 solar occultation observations of Saturn’s rings from the Cassini mission. The compilation, published recently in the scientific journal Icarus, will inform future investigations of the particle size distribution and composition of Saturn’s rings, key elements to understanding their formation and evolution.

“For nearly two decades, NASA’s Cassini spacecraft shared the wonders of Saturn and its family of icy moons and signature rings, but we still don’t definitively know the origins of the ring system,” said Dr. Stephanie Jarmak, a researcher in the SwRI Space Science Division. “Evidence indicates that the rings are relatively young and could have formed from the destruction of an icy satellite or a comet. However, to support any one origin theory, we need to have a good idea of the size of particles making up the rings.”

Cassini’s Ultraviolet Imaging Spectrograph (UVIS) was uniquely sensitive to some of the smallest ring particles, particularly with the observations it made in the extreme ultraviolet wavelength.

To determine the size of the ring particles, UVIS observed them when the instrument was pointed at the Sun, looking through the rings in what is known as a solar occultation. Ring particles partially blocked the path of the light, providing a direct measurement of the optical depth, a key parameter for determining the size and composition of the ring particles.

“Given the wavelength of the light coming from the Sun, these observations gave us insight into the smallest particle sizes with Saturn’s rings,” Jarmak said. “UVIS can detect dust particles at the micron level, helping us understand the origin, collisional activity and destruction of the ring particles within the system.”

The compilation also delves into the variations in the optical depth of occultation observations, which can help determine particle size and composition. During an occultation, light emitted by a background source, such as the Sun, is absorbed and scattered by the particles in the light’s path. The amount of light blocked by ring particles provides a direct measurement of the ring optical depth.

Including optical depth is vital to understanding the structure of the rings. The research measured the optical depth as a function of the viewing geometry, which refers to the observation angles of the ring system with respect to the Cassini spacecraft. As light passing through the rings changes at various angles, scientists can form a picture of the rings’ structures.

“Ring systems around giant planets also provide test beds for investigating fundamental physical properties and processes in our solar system in general,” Jarmak said. “These particles are thought to result from objects colliding and forming in a disk and building up larger particles. Understanding how they form these ring systems could help us understand how planets form as well.”

The paper “Solar occultation observations of Saturn’s rings with Cassini UVIS” appears in Icarus: https://doi.org/10.1016/j.icarus.2022.115237.

For more information, visit https://www.swri.org/planetary-science.



Journal

Icarus

DOI

10.1016/j.icarus.2022.115237

Method of Research

Observational study

Subject of Research

Not applicable

Article Title

Solar occultation observations of Saturn’s rings with Cassini UVIS

Article Publication Date

1-Dec-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Breakthrough in Alkaloid Chemistry: First Asymmetric Syntheses of Seven Quebracho Indole Alkaloids Achieved in Just 7-10 Steps Using “Antenna Ligands”

October 31, 2025
blank

Dual-Function Electrocatalysis: A Comprehensive Overview

October 31, 2025

Cologne Researchers Unveil New Element in the “Nuclear Periodic Table”

October 31, 2025

Molecular-Level Breakthrough in Electrochromism Unveiled

October 31, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1295 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Insights on Eosinophilic Granulomatosis with Polyangiitis: A Podcast

Boosting Lettuce Yields with Steel Slag Compost Teas

Comparing Immune Responses: Rituximab vs. Obinutuzumab in Follicular Lymphoma

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.