• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Unraveling the effect of cation types on electrochromic properties of titanium dioxide nanocrystals

Bioengineer by Bioengineer
October 2, 2022
in Chemistry
Reading Time: 4 mins read
0
Multivalent ion electrochromism
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

They published their work on Aug. 3rd in Energy Material Advances.

Multivalent ion electrochromism

Credit: Yi Liang, Guangxi University

They published their work on Aug. 3rd in Energy Material Advances.

 

“It is of great significance to search for alternative cheap, stable, and rapid insertion ions in EC devices to achieve cost-effective and rapid EC application.” said corresponding author Sheng Cao, associate professor with the School of Physical Science and Engineering Technology, Guangxi University. “Currently, there are many EC materials with Li+ and H+ as electrolytes, but they still have some problems, which hinder the further development.”

 

Cao explained that multivalent ions as insertion ion electrolytes can significantly improve the EC performance because the number of electrons per multivalent metal ion intercalates into the framework than Li+ or other monovalent ions.

 

“Zn2+ is regarded as superior to others to trigger the electrochromism due to its simplified preparation process and nontoxicity,” Cao said. “Furthermore, the EC device of trivalent Al3+ ion intercalation has attracted extensive attention because of its rich crustal storage, small ion radius, high optical contrast, safety, and reliability.

 

However, due to the strong electrostatic interaction between multivalent ions and the intercalation framework, there are great difficulties in the intercalation process. According to Cao, so far, the reports on EC performance driven by different valence cation ions mainly focus on the classical tungsten oxide EC materials, and there is a lack of systematic research on other EC materials. Titanium dioxide (TiO2) is a great potential candidate material because of its excellent physical, chemical stability, and acid resistance. However, there is still no report regarding TiO2 for trivalent ions electrochemical cells from the EC community or systematic research on EC performance driven by different valence ions yet.

 

The challenge is the stronger Coulomb ion lattice interaction of multivalent ions than monovalent ions, Cao said that tungsten doping into TiO2 can reduce the intercalation energy of ions and activate its electrochromic properties. Cao and his team explore the EC properties of anatase W-doped TiO2 NCs in different valence cations (i.e. Li+, Zn2+, and Al3+) by in-situ transmission spectroscopy and electrochemical tests.

 

“Experimental results and theoretical calculations show that Zn2+ can bring the required fast switching, high contrast, and high stability for EC devices,” Cao said. “The research results are of great significance to the basic research in the field of electrochromism and open up a new direction for realizing long-term stable, durable, and fast-switching devices.”

 

Cao is also affiliated with the Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials. Other contributors include Yi Liang, Yuwei Liu, Lijuan He, Xinxin Han, Ruosheng Zeng, Jialong Zhao and Bingsuo Zou, the MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi University.

 

The National Natural Science Foundation of China (51902064), the Scientific and Technological Bases and Talents of Guangxi (Guike AD20159073), Guangxi Natural Science Foundation (2022GXNSFFA0350325), the “Guangxi Hundred-Talent Program”, and the special fund for “Guangxi Bagui Scholars” supported this work.

 

          ###

 

Reference

Authors: Yi Liang,1 Sheng Cao,1 Yuwei Liu,1 Lijuan He,1 Xinxin Han,1 Ruosheng Zeng,1 Jialong Zhao,1 and Bingsuo Zou1

Title of original paper: Unraveling the Effect of Cation Types on Electrochromic Properties of Titanium Dioxide Nanocrystals

Journal: Energy Material Advances

DOI: 10.34133/2022/9878957

Affiliations: 

1MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, And Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Physical Science and Technology, Guangxi University, Nanning 530004, China

About the author: 

Sheng Cao received his Ph.D. degree from the University of Science and Technology Beijing. Then he served as a research fellow at the National University of Singapore. After that, he joined Guangxi University as an associate professor at the MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, and the School of Physical Science and Engineering Technology. His research interests involve quantum dot light-emitting diodes and electrochromic smart windows.



Journal

Energy Material Advances

DOI

10.34133/2022/9878957

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Unraveling the Effect of Cation Types on Electrochromic Properties of Titanium Dioxide Nanocrystals

Article Publication Date

3-Aug-2022

COI Statement

The authors declare no conflict of interest.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Why AI Models for Drug Design Struggle with Physics

October 29, 2025
blank

Pioneering the Era of Supramolecular Robotics: Molecules in Motion

October 29, 2025

Discovering New Insights into How Physical Forces Travel Through Neurons

October 29, 2025

Impact of Hurricane Helene on Groundwater Chemistry: A Scientific Analysis

October 28, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1289 shares
    Share 515 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    311 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    199 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

dmrt2a’s Role in Oocyte Development Discovered

Gastric Cancer Trends and Drivers: China, Japan, Korea

XGBoost Model Accurately Spots Multiethnic Skin Cancer Risks

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.