• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Improving wearable medical sensors with ultrathin mesh

Bioengineer by Bioengineer
September 29, 2022
in Chemistry
Reading Time: 4 mins read
0
Mesh structure of ultrathin polymer PTC thermistor
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

On-skin medical sensors and wearable health devices are important health care tools that must be incredibly flexible and ultrathin so they can move with the human body. In addition, the technology has to withstand bending and stretching, and it needs to be gas-permeable to prevent irritation and discomfort. Another important safety feature of these devices is the required overheat protection circuit. This prevents the devices from overheating and burning the wearer. Any new technology developed for these sensors must meet these needs.

Mesh structure of ultrathin polymer PTC thermistor

Credit: CHIHIRO OKUTANI, SHINSHU UNIVERSITY

On-skin medical sensors and wearable health devices are important health care tools that must be incredibly flexible and ultrathin so they can move with the human body. In addition, the technology has to withstand bending and stretching, and it needs to be gas-permeable to prevent irritation and discomfort. Another important safety feature of these devices is the required overheat protection circuit. This prevents the devices from overheating and burning the wearer. Any new technology developed for these sensors must meet these needs.

In a recent paper, researchers demonstrated how an important component of the sensors called a thermistor can be constructed using an ultrathin fiber-mesh. Thermistors are a type of resistor whose resistance significantly varies with temperature.

The paper was published online in Advanced Science on September 4.

“An overheat protection circuit is required to avoid burning biological tissues during the operation of flexible devices. One candidate is a polymer positive temperature coefficient (PTC) thermistor, which has a large increase in resistance within a narrow temperature range,” said Chihiro Okutani, an assistant professor in the Department of Electrical and Computer Engineering at Shinshu University in Japan. “For such thermistors to be applied for on-skin medical sensors, they must be stretchable and bendable down to several hundred micrometers. However, it is still challenging to fabricate a thermistor whose temperature characteristics do not deteriorate when wrapped around a needle with a bending radius of less than 1 mm.”

It is important for this technology to be able to wrap around a needle because sometimes sensors are attached to needles or catheters while in use. In order to achieve this, the thermistor needs to be ultrathin. Researchers used a technique called electrospinning to create the ultrathin mesh-type polymer PTC thermistor. Electrospinning uses electricity to create tiny fibers. The fibers can be made out of different materials, but in this case, researchers used a solution of composite materials.

The newly designed thermistor was then tested to ensure it achieved similar performance capabilities of existing technology. Like typical film-type thermistors, the mesh-type polymer PTC thermistor showed an increase in resistance of three orders of magnitude, an important characteristic for preventing overheating and burns. By using a mesh structure, the thermistor also achieved transparency, which can help the sensors blend into the skin, and gas-permeability. Gas-permeability is necessary because it prevents irritation and discomfort. “We also demonstrated the operation of the thermistor wrapped around a 280-micrometer needle by fabricating the fibers on a 1.4 micrometer ultrathin film,” said Okutani.

Even with this fiber layer, which serves to give the mesh structure and additional heat sensing, the thermistor remained very thin. This is important because any wearable medical device must be able to withstand bending and when the device is thinner, there is less strain. 

Though this thermistor technology is promising, more research will need to be done to make this a reliable alternative to the current thermistor technology on the market. A mesh-type thermistor has a high initial resistance value due to its limited number of conductive paths. The researchers proposed that reducing the spacing between fibers in the mesh or increasing the number of electrodes used could resolve some of these problems, but additional testing will need to be done.

“Our next step is practical applications of the developed thermistors. We believe that the ultraflexible and gas-permeable thermistors can act as overheat prevention components for on-skin or implantable devices, which make flexible sensors safer to operate and more reliable,” said Okutani.

Other contributors include Tomoyuki Yokota and Takao Someya of the Department of Electrical Engineering and Information Systems at the University of Tokyo.

JST ACCEL, Tateisi Science and Technology Foundation, and Japan Society for the Promotion of Science supported this research.

 

                       ###

 

About Shinshu University:

Shinshu University is a national university founded in 1949 located nestling under the Japan Alps in Nagano known for its stunning natural landscapes. Our motto, “Powered by Nature – strengthening our network with society and applying nature to create innovative solutions for a better tomorrow” reflects the mission of fostering promising creative professionals and deepening the collaborative relationship with local communities, which leads up to our contribution to regional development by the innovation in various fields. We’re working on providing solutions for building a sustainable society through interdisciplinary research fields: material science (carbon, fiber and composites), biomedical science (for intractable diseases and preventive medicine) and mountain science, and aiming to boost research and innovation capability through collaborative projects with distinguished researchers from the world. For more information visit https://www.shinshu-u.ac.jp/english/ or follow us on Twitter @ShinshuUni for our latest news.



Journal

Advanced Science

DOI

10.1002/advs.202202312

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Ultrathin Fiber-Mesh Polymer Thermistors

Article Publication Date

4-Sep-2022

COI Statement

The authors declare no conflict of interest.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Decision-Making in Dementia Caregivers’ Mobility

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.