• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Plant breeding: Using “invisible” chromosomes to pass on packages of positive traits

Bioengineer by Bioengineer
September 20, 2022
in Chemistry
Reading Time: 4 mins read
0
Using genetic scissors, KIT researchers have inverted and deactivated nine-tenths of a chromosome to prevent genetic exchange (detailed caption at end of text; illustration: Michelle Rönspies, KIT).
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The ideal crop plant is tasty and high-yielding while also being resistant to diseases and pests. But if the relevant genes are far apart on a chromosome, some of these positive traits can be lost during breeding. To ensure that positive traits can be passed on together, researchers at Karlsruhe Institute of Technology (KIT) have used CRISPR/Cas molecular scissors to invert and thus genetically deactivate nine-tenths of a chromosome. The traits coded for on this part of the chromosome become “invisible” for genetic exchange and can thus be passed on unchanged. The researchers have reported on their findings in Nature Plants (DOI: 10.1038/s41477-022-01238-3).

Using genetic scissors, KIT researchers have inverted and deactivated nine-tenths of a chromosome to prevent genetic exchange (detailed caption at end of text; illustration: Michelle Rönspies, KIT).

Credit: Michelle Rönspies, KIT

The ideal crop plant is tasty and high-yielding while also being resistant to diseases and pests. But if the relevant genes are far apart on a chromosome, some of these positive traits can be lost during breeding. To ensure that positive traits can be passed on together, researchers at Karlsruhe Institute of Technology (KIT) have used CRISPR/Cas molecular scissors to invert and thus genetically deactivate nine-tenths of a chromosome. The traits coded for on this part of the chromosome become “invisible” for genetic exchange and can thus be passed on unchanged. The researchers have reported on their findings in Nature Plants (DOI: 10.1038/s41477-022-01238-3).

 

Targeted editing, insertion or suppression of genes in plants is possible with CRISPR/Cas molecular scissors. (CRISPR stands for Clustered Regularly Interspaced Short Palindromic Repeats.) This method can be used to make plants more resistant to pests, diseases or environmental influences. “In recent years, we were able for the first time to use CRISPR/Cas not only to edit genes but also to change the structure of chromosomes,” says Professor Holger Puchta, who for 30 years has been researching applications for gene scissors with his team at KIT’s Botanical Institute. “Genes are linearly arranged along chromosomes. By changing their sequence, we were able to show how desired traits in plants can be separated from undesired ones.” 

 

Now the researchers have been able to prevent the genetic exchange that is normally part of the hereditary process but can break the links between traits. “We can shut down a chromosome almost completely, making it seem invisible, so that all traits on that chromosome can be passed on in a package,” says Puchta. Until now, if a plant’s traits were to be passed on together, the genes for those traits needed to be close to each other on the same chromosome. If such genes are spread farther apart on a chromosome, they are usually separated during inheritance, so a beneficial trait can be lost during the breeding process. 

 

Learning from Nature: Chromosome Engineering Prevents Genetic Exchange

In their research, the scientists followed nature’s example. “These reversals, or inversions – a kind of genetic invisibility – also occur frequently on a smaller scale in wild and cultivated plants. We’ve learned from nature and have applied and extended our knowledge about the natural process,” says Puchta.

In collaboration with Professor Andreas Houben from the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Puchta and his team inverted nine-tenths of a chromosome in the model organism Arabidopsis thaliana (thale cress). Only at the ends of the chromosome did the genes retain their original sequence. “With these fragments, the chromosome can be passed on to the next generation just like the other chromosomes and is not completely lost,” says Puchta.

 

Enabling Future Cultivation of More Efficient and More Robust Crop Plants

To breed crops efficiently, it is important to combine as many favorable traits as possible in one plant. “Of course plant breeders want their products to taste good, have as many vitamins as possible and also be resistant to disease. With our method, we can make that easier in the future,” says Puchta.

Original publication
Michelle Rönspies, Carla Schmidt, Patrick Schindele, Michal Lieberman-Lazarovich, Andreas Houben, and Holger Puchta: Massive Crossover Suppression by CRISPR-Cas-mediated Plant Chromosome Engineering. Nature Plants, 2022. DOI 10.1038/s41477-022-01238-3. https://www.nature.com/articles/s41477-022-01238-3 

Detailed caption:
Genetic exchange of paternal and maternal characteristics normally occurs along the entire length of a chromosome. Through inversion of most of the chromosome (yellow) with CRISPR/Cas molecular scissors, this exchange can now be limited to the extreme ends (violet and blue). (Illustration: Michelle Rönspies, KIT)

 

Being “The Research University in the Helmholtz Association”, KIT creates and imparts knowledge for the society and the environment. It is the objective to make significant contributions to the global challenges in the fields of energy, mobility, and information. For this, about 9,800 employees cooperate in a broad range of disciplines in natural sciences, engineering sciences, economics, and the humanities and social sciences. KIT prepares its 22,300 students for responsible tasks in society, industry, and science by offering research-based study programs. Innovation efforts at KIT build a bridge between important scientific findings and their application for the benefit of society, economic prosperity, and the preservation of our natural basis of life. KIT is one of the German universities of excellence.



Journal

Nature Plants

DOI

10.1038/s41477-022-01238-3

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Massive crossover suppression by CRISPR–Cas-mediated plant chromosome engineering

Article Publication Date

15-Sep-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.