• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Data science reveals universal rules shaping cells’ power stations

Bioengineer by Bioengineer
September 16, 2022
in Chemistry
Reading Time: 3 mins read
0
Chloroplast and mitochondria
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Mitochondria are compartments – so-called “organelles” — in our cells that provide the chemical energy supply we need to move, think, and live. Chloroplasts are organelles in plants and algae that capture sunlight and perform photosynthesis. At a first glance, they might look worlds apart. But an international team of researchers, led by the University of Bergen, have used data science and computational biology to show that the same “rules” have shaped how both organelles – and more – have evolved throughout life’s history.

Chloroplast and mitochondria

Credit: Iain Johnston and Sigrid Johnston-Røyrvik

Mitochondria are compartments – so-called “organelles” — in our cells that provide the chemical energy supply we need to move, think, and live. Chloroplasts are organelles in plants and algae that capture sunlight and perform photosynthesis. At a first glance, they might look worlds apart. But an international team of researchers, led by the University of Bergen, have used data science and computational biology to show that the same “rules” have shaped how both organelles – and more – have evolved throughout life’s history.

Both types of organelle were once independent organisms, with their own full genomes. Billions of years ago, those organisms were captured and imprisoned by other cells – the ancestors of modern species. Since then, the organelles have lost most of their genomes, with only a handful of genes remaining in modern-day mitochondrial and chloroplast DNA. These remaining genes are essential for life and important in many devastating diseases, but why they stay in organelle DNA – when so many others have been lost — has been debated for decades.

For a fresh perspective on this question, the scientists took a data-driven approach. They gathered data on all the organelle DNA that has been sequenced across life. They then used modelling, biochemistry, and structural biology to represent a wide range of different hypotheses about gene retention as a set of numbers associated with each gene. Using tools from data science and statistics, they asked which ideas could best explain the patterns of retained genes in the data they had compiled – testing the results with unseen data to check their power.

“Some clear patterns emerged from the modelling,” explains Kostas Giannakis, a postdoctoral researcher at Bergen and joint first author on the paper. “Lots of these genes encode subunits of larger cellular machines, which are assembled like a jigsaw. Genes for the pieces in the middle of the jigsaw are most likely to stay in organelle DNA.”

The team believe that this is because keeping local control over the production of such central subunits help the organelle quickly respond to change – a version of the so-called “CoRR” model. They also found support for other existing, debated, and new ideas. For example, if a gene product is hydrophobic – and hard to import to the organelle from outside – the data shows that it is often retained there. Genes that are themselves encoded using stronger-binding chemical groups are also more often retained – perhaps because they are more robust in the harsh environment of the organelle.

“These different hypotheses have usually been thought of as competing in the past,” says Iain Johnston, a professor at Bergen and leader of the team. “But actually no single mechanism can explain all the observations – it takes a combination. A strength of this unbiased, data-driven approach is that it can show that lots of ideas are partly right, but none exclusively so – perhaps explaining the long debate on these topics.”

To their surprise, the team also found that their models trained to describe mitochondrial genes also predicted the retention of chloroplast genes, and vice versa. They also found that the same genetic features shaping mitochondrial and chloroplast DNA also appear to play a role in the evolution of other endosymbionts – organisms which have been more recently captured by other hosts, from algae to insects.

“That was a wow moment,” says Johnston. “We – and others – have had this idea that similar pressures might apply to the evolution of different organelles. But to see this universal, quantitative link – data from one organelle precisely predicting patterns in another, and in more recent endosymbionts – was really striking.”

The research is part of a broader project funded by the European Research Council, and the team are now working on a parallel question – how different organisms maintain the organelle genes that they do retain. Mutations in mitochondrial DNA can cause devastating inherited diseases; the team are using modelling, statistics, and experiments to explore how these mutations are dealt with in humans, plants, and more.



Journal

Cell Systems

DOI

10.1016/j.cels.2022.08.007

Subject of Research

Not applicable

Article Title

Evolutionary inference across eukaryotes identifies universal features shaping organelle gene retention

Article Publication Date

16-Sep-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.