• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Study finds new target for controlling cell division

Bioengineer by Bioengineer
January 18, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: (Photo courtesy of Dr. Michael Polymenis, Texas A&M AgriLife Research)

COLLEGE STATION — Modern genome sequencing methods used to measure the efficiency of synthesis of individual protein during cell division has found that the enzymes that make lipids and membranes were synthesized at much greater efficiency when a cell is ready to split.

That is a conclusion of collaborative research published this month in the European Molecular Biology Organization Journal, according to Dr. Michael Polymenis, a Texas A&M AgriLife Research biochemist in College Station and lead author.

Microscopy images of dividing yeast cells accumulating lipid droplets (shown as bright spots) because they have lost their ability to regulate the synthesis of a key lipogenic enzyme. (Photo courtesy of Dr. Michael Polymenis, Texas A&M AgriLife Research)

Polymenis said the finding provides new targets for controlling cell division in future studies. That's important, he said, because dysregulated cell division is a factor in some diseases, such as cancer.

"Understanding the role of protein synthesis during cell division will shed light on when cells will initiate their division, how fast they will complete it, the number of successive cell divisions, and the coordination of cell proliferation with the available nutrients," said Dr. Heidi Blank, Texas A&M University assistant scientist and the paper's co-author.

The research profiled yeast cells from the time of cell birth to identify messenger RNAs as they translated into proteins. That showed the development of lipids late in the cell cycle and the connection to cell division.

The report, which included scientists from Texas A&M and The Buck Institute for Research on Aging, noted that no studies previously had "queried directly and comprehensively the efficiency with which each individual protein is made during cell division in growing cells."

It turns out that not all proteins are made with the same efficiency, Polymenis said.

"If the dream of every cell is to become two cells as the Nobelist François Jacob famously quipped in 1971, then it is protein synthesis that makes cellular dreams come true," he said. "Protein synthesis underpins much of cell growth and determines the rate at which cells proliferate."

The research combined computational approaches to analyze the data by Dr. Rodolfo Aramayo, Texas A&M biology professor in College Station, and relied on state-of-the-art genome sequencing facilities at Texas A&M, directed by Dr. Charlie Johnson. It was funded by AgriLife Research, Texas A&M and the National Institutes of Health.

###

Media Contact

Kathleen Phillips
[email protected]
979-845-2872
@texasagwriter

http://today.agrilife.org

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Overcoming Challenges in Treating Severe Eating Disorders

September 12, 2025

Necroptosis Creates Soluble Tissue Factor Driving Thrombosis

September 12, 2025

Terabase-Scale Long-Reads Reveal Soil Bioactive Molecules

September 12, 2025

Diverse, Lasting, and Adaptable Brain Growth Post-Preterm

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Overcoming Challenges in Treating Severe Eating Disorders

Necroptosis Creates Soluble Tissue Factor Driving Thrombosis

Terabase-Scale Long-Reads Reveal Soil Bioactive Molecules

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.