• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Molecule shows ability to thwart pathogens’ genetic resistance to antibiotic

Bioengineer by Bioengineer
January 18, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

CORVALLIS, Ore. – Oregon State University researchers have developed a new weapon in the battle against antibiotic-resistant germs – a molecule that neutralizes the bugs' ability to destroy the antibiotic.

Scientists at OSU were part of an international collaboration that demonstrated the molecule's ability to inhibit expression of an enzyme that makes bacteria resistant to a wide range of penicillins.

The molecule is a PPMO, short for peptide-conjugated phosphorodiamidate morpholino oligomer. The enzyme it combats is known as New Delhi metallo-beta-lactamase, or NDM-1, and it's accompanied by additional genes that encode resistance to most if not all antibiotics.

"We're targeting a resistance mechanism that's shared by a whole bunch of pathogens," said Bruce Geller, professor of microbiology in OSU's College of Science and College of Agricultural Sciences, who's been researching molecular medicine for more than a decade. "It's the same gene in different types of bacteria, so you only have to have one PPMO that's effective for all of them, which is different than other PPMOs that are genus specific."

The Oregon State study showed that in vitro the new PPMO restored the ability of an antibiotic — in this case meropenem, an ultra-broad-spectrum drug of the carbapenem class — to fight three different genera of bacteria that express NDM-1. The research also demonstrated that a combination of the PPMO and meropenem was effective in treating mice infected with a pathogenic strain of E. coli that is NDM-1 positive.

Results of the study, supported by a grant from the National Institutes of Health, were recently published in the Journal of Antimicrobial Chemotherapy.

Geller says the PPMO will likely be ready for testing in humans in about three years.

"We've lost the ability to use many of our mainstream antibiotics," Geller said. "Everything's resistant to them now. That's left us to try to develop new drugs to stay one step ahead of the bacteria, but the more we look the more we don't find anything new. So that's left us with making modifications to existing antibiotics, but as soon as you make a chemical change, the bugs mutate and now they're resistant to the new, chemically modified antibiotic."

That progression, Geller explains, made the carbapenems, the most advanced penicillin-type antibiotic, the last line of defense against bacterial infection.

"The significance of NDM-1 is that it is destroys carbapenems, so doctors have had to pull out an antibiotic, colistin, that hadn't been used in decades because it's toxic to the kidneys," Geller said. "That is literally the last antibiotic that can be used on an NDM-1-expressing organism, and we now have bacteria that are completely resistant to all known antibiotics. But a PPMO can restore susceptibility to antibiotics that have already been approved, so we can get a PPMO approved and then go back and use these antibiotics that had become useless."

###

In addition to Geller, the research team included Oregon State postdoctoral scholars Erin Sully and Lixin Li and OSU undergraduate student Christina Moody, as well as scientists from Sarepta Therapeutics, Harvard Medical School, the University of Fribourg, and the University of Texas Southwestern.

Media Contact

Bruce Geller
[email protected]
541-737-1845
@oregonstatenews

http://www.orst.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.