• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Jumping gene found to be strongly linked to depression, fear, and anxiety

Bioengineer by Bioengineer
September 9, 2022
in Chemistry
Reading Time: 4 mins read
0
A graphical summary of the research paper
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

First characterized in Prof. Tadashi Yamamoto’s former lab in Japan in 1996, the gene Tob is well known for the role it plays in cancer. Previous research has also indicated that it has a hand in regulating the cell cycle and the body’s immune response. Now, in a multidisciplinary study that combines molecular biology with neuroscience, researchers from the Okinawa Institute of Science and Technology (OIST) have found that this gene also plays an important role in reducing depression, fear, and anxiety. Their work was published by the journal Translational Psychiatry.

A graphical summary of the research paper

Credit: OIST

Highlights

  • Researchers have found that a well-known gene, Tob, plays an important role in reducing depression, fear, and anxiety.
  • This conclusion was drawn after several different experiments involving mice in both cell biology and neuroscience.
  • They also found that the Tob gene within the hippocampus was important for reducing fear and depression, but not anxiety. That seemed to be controlled by another part of the brain.
  • What’s more, the mice without the Tob gene didn’t seem to learn that a place wasn’t so bad—they continued to show increased levels of fear observed as freezing, even after several days.
  • The researchers stated that uncovering this role of the Tob gene in depression, fear, and anxiety could have vast implications for developing therapeutics for psychiatric stress

 

First characterized in Prof. Tadashi Yamamoto’s former lab in Japan in 1996, the gene Tob is well known for the role it plays in cancer. Previous research has also indicated that it has a hand in regulating the cell cycle and the body’s immune response. Now, in a multidisciplinary study that combines molecular biology with neuroscience, researchers from the Okinawa Institute of Science and Technology (OIST) have found that this gene also plays an important role in reducing depression, fear, and anxiety. Their work was published by the journal Translational Psychiatry.

“This research is about understanding stress-resilience,” explained lead author, Dr. Mohieldin Youssef, former PhD student in OIST’s Cell Signal Unit, which is led by Prof. Yamamoto. “The presence of the gene helps with stress-resilience and if it’s removed, there’s an increase in depression, fear, and anxiety.”

Tob is named for the Japanese verb “tobu”, which means to fly or to jump. This is because when the cell is exposed to a stimulus, its protein levels jump in activity. Dr. Youssef said that this has resulted in the gene being classed as an immediate-early gene, as it has such a fast response. 

“The Tob gene is related to many different phenomena but working on the brain system is particularly challenging,” said Prof. Yamamoto. “Although it was previously suspected, this research is the first work that clarifies that Tob has a function in the brain against stress.”

Their conclusion that this gene is linked to anxiety, fear, and depression was drawn from several different experiments. First, the researchers exposed mice to stress and, as expected, saw the Tob protein levels increase. They then used mice which had been born without a Tob gene and found an increase in depression, fear, and anxiety. For example, when a mouse with the Tob gene was placed in a bucket of water, they would swim and try to escape. However, a mouse without the Tob gene simply floated. This lack of will to fight a difficult situation is one way that researchers determine that an animal is depressed.

What’s more, the mice without the Tob gene didn’t seem to learn. Dr. Youssef explained that when mice are put day-after-day in a place which evokes fear memory, they normally learn that it isn’t so bad and stop being as frightened. But those without the Tob gene still showed increased levels of fear observed as freezing, even after several days.

The researchers then teamed up with OIST’s former PhD student Dr. Hiroaki Hamada from the Neural Computational Unit. Through an MRI, they found that the connectivity between two key places regulating brain’s stress resilience was altered when the Tob gene was removed—the hippocampus and the pre-frontal cortex. From there, the researchers decided to look at the specific role that the gene plays within the hippocampus. They took mice without the Tob gene and injected this gene into the hippocampus, while leaving it nonexistent in other parts of the body. The level of fear and depression returned to normal, but the mice still had increased anxiety. The researchers then did the opposite—they created a mouse that had no Tob gene in the cells in the hippocampus but had it in the cells in the rest of the body. In this case, they found that the mice had normal levels of anxiety but increased fear and depression.

“We’ve concluded that the Tob gene within the hippocampus suppresses fear and depression,” explained Dr. Youssef. “But the suppression of anxiety must be regulated by another part of the brain.”

Next, researchers from OIST’s former Brain Mechanisms for Behavior Unit measured the function of the neurons within the hippocampus of the mice without the Tob gene. They found that excitation was increased, while inhibition was decreased, suggesting that the overall balance was impacted, which would impact the behavior of the mice.

Finally, the researchers conducted molecular analyses after exposing the mice to stress. Interestingly, they found that expression didn’t immediate change with stress. But, 15 minutes after exposing the mice to stress, there were changes. Other genes and proteins were impacted if the Tob gene was deleted. This suggests that the Tob gene likely has multiple direct and indirect impacts. 

“Uncovering this role of the Tob gene in fear, depression, and anxiety could have vast implications for developing therapeutics for psychiatric stress,” said Dr. Youssef.

Research article:

  • Title: TOB is an effector of the hippocampus-mediated acute stress response
  • Journal: Translational Psychiatry
  • Authors: Mohieldin M. M. Youssef, Hiro Taiyo Hamada, Esther Suk King Lai, Yuji Kiyama, Mohamed El-Tabbal, Hiroshi Kiyonari, Kohei Nakano, Bernd Kuhn & Tadashi Yamamoto 
  • DOI: 10.1038/s41398-022-02078-7


Journal

Translational Psychiatry

DOI

10.1038/s41398-022-02078-7

Method of Research

Experimental study

Subject of Research

Animals

Article Title

TOB is an effector of the hippocampus-mediated acute stress response

Article Publication Date

29-Jul-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Bezos Earth Fund Awards $2M to UC Davis and American Heart Association to Pioneer AI-Designed Foods

October 24, 2025
Organocatalytic Intramolecular Macrocyclization of Quinone Methylidenes with Alcohols Achieves Enantio-, Atropo-, and Diastereoselectivity

Organocatalytic Intramolecular Macrocyclization of Quinone Methylidenes with Alcohols Achieves Enantio-, Atropo-, and Diastereoselectivity

October 24, 2025

Breakthrough Discovery of Elusive Solar Waves That May Energize the Sun’s Corona

October 24, 2025

From Wastewater to Fertile Ground: Chinese Researchers Achieve Dual Breakthroughs in Phosphorus Recycling

October 23, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1282 shares
    Share 512 Tweet 320
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    309 shares
    Share 124 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    193 shares
    Share 77 Tweet 48
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    133 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nurses’ Crucial Role in Suicide Prevention: A Review

Exploring Archaeal Promoters with Explainable CNN Models

Using Roundness to Predict Bowel Necrosis in Intussusception

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.