• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

First-ever axolotl stereo-seq reveals brain regeneration insights

Bioengineer by Bioengineer
September 6, 2022
in Biology
Reading Time: 4 mins read
0
Tissue types the axolotl can regenerate
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The axolotl Ambystoma mexicanum is a popular pet due to its unique and cute appearance. Unlike other salamanders undergoing metamorphosis, axolotls (pronounced ACK-suh-LAH-tuhl) never outgrow their larval, juvenile stage, a phenomenon called neoteny. It is also known for its ability to regenerate lost limbs and other tissues such as the brain, spinal cord, tail, skin, limbs, liver, skeletal muscle, heart, upper and lower jaw, and ocular tissues such as retina, cornea, and lens.
 
Upon brain injury, mammals, including humans, are almost incapable of regenerating the lost tissue. In contrast, some animals such as fish and axolotls may replenish injured brain regions with new neurons. 

Tissue types the axolotl can regenerate

Credit: Debuque and Godwin, 2016

The axolotl Ambystoma mexicanum is a popular pet due to its unique and cute appearance. Unlike other salamanders undergoing metamorphosis, axolotls (pronounced ACK-suh-LAH-tuhl) never outgrow their larval, juvenile stage, a phenomenon called neoteny. It is also known for its ability to regenerate lost limbs and other tissues such as the brain, spinal cord, tail, skin, limbs, liver, skeletal muscle, heart, upper and lower jaw, and ocular tissues such as retina, cornea, and lens.
 
Upon brain injury, mammals, including humans, are almost incapable of regenerating the lost tissue. In contrast, some animals such as fish and axolotls may replenish injured brain regions with new neurons. 

Brain regeneration requires coordination of complex responses in a time and region-specific manner. To better understand this process, BGI and its research partners have applied Stereo-seq technology to reconstruct the axolotl brain architecture during developing and regenerating processes at single-cell resolution in a study published on the cover of Science. Examining the genes and cell types that allow axolotls to regenerate their brains may be the key to improve treatments for severe injuries and unlock regeneration potential in humans.
 
The research team collected axolotl samples from six development stages and seven regeneration phases with corresponding spatiotemporal Stereo-seq data. The six developmental stages include:

– The first feeding stage after hatching (Stage 44);
– The forelimb development stage (Stage 54);
– The hindlimb development stage (Stage 57);
– Juvenile stage;
– Adulthood;
– Metamorphosis
 
Through the systematic study of cell types in various developmental stages, researchers found that during early development stage neural stem cells located in the VZ region are difficult to distinguish between subtypes, and with specialized neural stem cell subtypes with spatial regional characteristics from adolescence, thus suggesting that various subtypes may have different functions during regeneration.

In the third part of the study, the researchers generated a group of spatial transcriptomic data of telencephalon sections that covered seven injury-induced regenerative stages. After 15 days, new subtype of neural stem cells, reaEGC (reactive ependymoglial cells), appeared at the wound area. 

Partial tissue connection appeared at the wound, and after 20 to 30 days, new tissue had been regenerated, but the cell type composition was significantly different from the non-injured tissue. The cell types and distribution in the damaged area did not return to the state of the non-injured tissue until 60 days post-injury.

The key neural stem cell subtype (reaEGC) involved in this process was derived from the activation and transformation of quiescent neural stem cell subtypes (wntEGC and sfrpEGC) near the wound after being stimulated by injury.
 
What are the similarities and differences between neuron formation during development and regeneration?Researchers discovered a similar pattern between development and regeneration, which is from neural stem cells to progenitor cells, subsequently into immature neurons and finally to mature neurons. 

By comparing the molecular characteristics of the two processes, the researchers found that the neuron formation process is highly similar during regeneration and development, indicating that injury induces neural stem cells to transform themselves into a rejuvenated state of development to initiate the regeneration process.

“Our team analyzed the important cell types in the process of axolotl brain regeneration, and tracked the changes in its spatial cell lineage,” said Dr. Xiaoyu Wei, the first author of this paper and BGI-Research senior researcher. “The spatiotemporal dynamics of key cell types revealed by Stereo-seq provide us a powerful tool to pave new research directions in life sciences.”

Corresponding author Xun Xu, Director of Life Sciences at BGI-Research, noted that, “In nature, there are many self-regenerating species, and the mechanisms of regeneration are pretty diverse. With multi-omics methods, scientists around the world may work together more systematically.”

Note: This study has passed ethical reviews and follows the corresponding regulations and ethical guidelines.

About BGI Genomics

BGI Genomics, headquartered in Shenzhen China, is the world’s leading provider of genomic sequencing and proteomic services. Our services cover over 100 countries and regions, involving more than 2,300 medical institutions.
 



Journal

Science

DOI

10.1126/science.abp9444

Method of Research

Imaging analysis

Subject of Research

Cells

Article Title

Single-cell Stereo-seq reveals induced progenitor cells involved in axolotl brain regeneration

Article Publication Date

2-Sep-2022

COI Statement

BGI researchers have no conflict of interest related to this news release

Share12Tweet8Share2ShareShareShare2

Related Posts

Coral Grouper Genome Reveals Eupercaria Evolutionary Insights

Coral Grouper Genome Reveals Eupercaria Evolutionary Insights

September 26, 2025

Mammalian Hibernator-Derived Cholangiocyte Organoids Enhance Liver Cold Preservation: New Insights

September 26, 2025

When Mom and Dad’s DNA Don’t Match, the Embryo Adapts

September 26, 2025

Saskatoon Berry: Nutrition, Phytochemicals, Benefits, Shelf-Life, Uses

September 26, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    81 shares
    Share 32 Tweet 20
  • Physicists Develop Visible Time Crystal for the First Time

    72 shares
    Share 29 Tweet 18
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    55 shares
    Share 22 Tweet 14
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tracing E. coli ST131 Spread in Households: One Health

Cutting-Edge Biomonitoring Advances Boost Women’s Health

Measuring a Broad Sarbecovirus Vaccine’s Future Impact

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.