• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Luminescent proteins provide color to ecological and cheap bio-displays

Bioengineer by Bioengineer
January 18, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Katharina Weber

Mobile phone, computer and TV displays all use very expensive colour filters and other components, which cannot be easily recycled. German and Spanish scientists have designed a new screen, which is cheaper and ecological as it uses a hybrid material. This material's luminescent proteins can be used in backlighting systems and colour filters made using a 3D printing technique.

The success of liquid crystal displays (LCD), used in many portable devices such as telephones, laptops and TVs, is largely due to their use of LEDs or inorganic white light-emitting diodes, which provide exceptional image quality and are energy-efficient.

However, these displays have several inconveniencies: the high cost of the colour filters, limited brightness and contrast levels and the difficulty of recycling materials used to make them.

In response to these problems, a team of scientists at the University of Erlangen-Nurnberg (Germany) led by Rubén D. Costa, from Spain, have designed a new display made of natural elements: luminescent proteins, "which will enable, in the not too distant future, the manufacturing of these devices to be done ecologically and at a low cost".

Researchers use these proteins in two parts of the display. On the one hand, in the display's backlighting, using a Bio-LED featuring white light with different coloured luminescent proteins. As well as representing a new design in display backlighting, this technology, details of which were published last year, can be used as a substitute from inorganic phosphorous -a rare and expensive material- used in traditional LED displays.

"The proteins have a photoluminescence quantum yield of more than 75%. High efficiency is guaranteed," says Costa. In addition, they have a low emission bandwidth (30-50 nm), ensuring high colour quality and degradation does not produce significant colour changes".

Details of another protein component to the display, the colour filter, have been published by the scientists in the journal 'Advanced Functional Materials'. Here, the proteins are stored in a polymeric matrix with micrometric resolution using a 3D printing technique, which enables them to maintain their luminescent properties and optimum stability.

"This colour filter meets the necessary requirement to improve displays currently being used in terms of contrast and brightness, within quality standards demanded across the market," says Costa. "This new material will allow for the development of energy-efficient Bio-displays for TVs and mobile telephones, with low production costs, high image quality and ecologically sustainability. Also, these filters are not rigid, allowing them to be used in devices which are flexible and light.

###

References:

Rubén D. Costa, A. R. Boccaccini et al. "Micropatterned Down-Converting Coating for White Bio-Hybrid Light-Emitting Diodes". Advanced Functional Materials 27 (Issue 1), 2017.

Media Contact

SINC
[email protected]
34-914-251-820
@FECYT_Ciencia

http://www.fecyt.es/fecyt/home.do

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Lung Function in Cystic Fibrosis: MRI Methods

September 12, 2025
Hope for Sahara Killifish’s Rediscovery in Algeria!

Hope for Sahara Killifish’s Rediscovery in Algeria!

September 12, 2025

Dopamine D2 Receptors and Heart Cell Death Unveiled

September 12, 2025

Evaluating Rapid Start HIV Treatment Benefits in U.S.

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Lung Function in Cystic Fibrosis: MRI Methods

Hope for Sahara Killifish’s Rediscovery in Algeria!

Dopamine D2 Receptors and Heart Cell Death Unveiled

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.