• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

High performance solid-state thermoelectric energy conversion via inorganic metal halide perovskites under tailored mechanical deformation

Bioengineer by Bioengineer
August 22, 2022
in Chemistry
Reading Time: 2 mins read
0
High performance solid-state thermoelectric energy conversion via inorganic metal halide perovskites under tailored mechanical deformation
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Solid-state thermoelectric energy conversion devices attract broad research interests because they show great promises in waste heat recycling, space power generation, deep water power generation, and temperature control, but the search for the essential thermoelectric materials with high performance remains challenging.

High performance solid-state thermoelectric energy conversion via inorganic metal halide perovskites under tailored mechanical deformation

Credit: HIGHER EDUCATION PRESS LIMITED COMPANY

Solid-state thermoelectric energy conversion devices attract broad research interests because they show great promises in waste heat recycling, space power generation, deep water power generation, and temperature control, but the search for the essential thermoelectric materials with high performance remains challenging.

A research group of Lingling Zhao from Southeast University and Shangchao Lin from Shanghai Jiao Tong University just investigated inorganic metal halide perovskites CsPb(I1–xBrx)3 under mechanical deformation systematically using the first-principle calculations and the Boltzmann transport theory. They demonstrate that intrinsic strains can be introduced into thermoelectric devices under mechanical deformation, which opens up a new technical approach for improving the stability and thermoelectric performance of perovskite materials.

Halogen mixing and mechanical deformation are efficient methods to tailor the electronic structures and charge transport properties in CsPb(I1–xBrx)3 synergistically. The strain effect is related to the energy level shift of the electronic band structure CBM of perovskite. The power generation efficiency of the thermoelectric device can reach as high as approximately 12% using mixed halide perovskites under tailored mechanical deformation when the heat-source is at 500 K and the cold side is maintained at 300 K, surpassing the performance of many existing bulk thermoelectric materials.

This study can provide theoretical guidance for the transport performance regulation of perovskite and the performance improvement of thermoelectric devices.



Journal

Frontiers in Energy

DOI

10.1007/s11708-022-0831-y

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

High performance solid-state thermoelectric energy conversion via inorganic metal halide perovskites under tailored mechanical deformation

Article Publication Date

19-Jul-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Palladium Filters Pave the Way for More Affordable, Efficient Hydrogen Fuel Production

October 1, 2025
Revolutionary Organic Molecule Poised to Transform Solar Energy Harvesting

Revolutionary Organic Molecule Poised to Transform Solar Energy Harvesting

October 1, 2025

Innovative Biochar Technology Offers Breakthrough in Soil Remediation and Crop Protection

October 1, 2025

CATNIP Tool Expands Access to Sustainable Chemistry Through Data-Driven Innovation

October 1, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    65 shares
    Share 26 Tweet 16
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Early-Onset Gastric Cancer Trends in BRICS

Monoclonal Antibodies Shield Against Drug-Resistant Klebsiella

High-Frame Ultrasound Reveals Liver Cancer Insights

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.