• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Study uncovers what happens inside artery plaque to trigger strokes

Bioengineer by Bioengineer
August 11, 2022
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Heart attacks and strokes are a leading cause of death in the United States, but scientists are still working to understand one of their primary triggers. What causes plaque buildup within arteries to become unstable, leading parts to suddenly burst or break away?

A key obstacle is that researchers haven’t been able to study plaques during a stroke. 

For the first time, researchers at Tulane University and Ochsner Health were able to genetically sequence carotid plaque tissue collected from patients within days after a stroke. When compared to stable plaque, researchers discovered the tissues from recent stroke victims contained messenger RNA that can cause inflammation and processes that degrade a key portion of the plaque that protects against rupture, according to results recently published in Scientific Reports.

The discovery could help researchers develop new tools to stop strokes from happening. 

“The genes identified in our study could be used as targets to develop new drugs or diagnostics to help prevent strokes and heart attacks,” said study senior author Cooper Woods, PhD, associate professor of physiology and medicine at Tulane University School of Medicine.

The study was co-authored by Dr. Hernan Bazan, the John Ochsner Endowed Professor for Cardiovascular Innovation at Ochsner Health.

Surprisingly, the researchers found that ruptured plaques had increased markers of B-cells, a white blood cell whose role in plaque rupture has not previously been appreciated. 

Previous studies have relied on carotid artery samples obtained after the patient’s death or months after the stroke or heart attack. This either limits the information that can be obtained or misses events that occur only at the time of rupture.

Carotid artery blockage is a common cause of some ischemic strokes, which happens when the blood supply to part of the brain is interrupted, preventing brain tissue from getting necessary oxygen and nutrients. Because the mechanisms that lead to some strokes and most heart attacks involve the same plaque rupture events, these findings also have implications for heart disease.

“Inflammation is a known risk factor in atherosclerosis, leading to stroke and heart attacks,” Bazan said. “Carotid and coronary plaques develop a protective cap that, for unclear reasons, thins, making strokes and heart attacks more likely.”  

The full study is online here.

Cooper Woods, PhD

Credit: Tulane University

Heart attacks and strokes are a leading cause of death in the United States, but scientists are still working to understand one of their primary triggers. What causes plaque buildup within arteries to become unstable, leading parts to suddenly burst or break away?

A key obstacle is that researchers haven’t been able to study plaques during a stroke. 

For the first time, researchers at Tulane University and Ochsner Health were able to genetically sequence carotid plaque tissue collected from patients within days after a stroke. When compared to stable plaque, researchers discovered the tissues from recent stroke victims contained messenger RNA that can cause inflammation and processes that degrade a key portion of the plaque that protects against rupture, according to results recently published in Scientific Reports.

The discovery could help researchers develop new tools to stop strokes from happening. 

“The genes identified in our study could be used as targets to develop new drugs or diagnostics to help prevent strokes and heart attacks,” said study senior author Cooper Woods, PhD, associate professor of physiology and medicine at Tulane University School of Medicine.

The study was co-authored by Dr. Hernan Bazan, the John Ochsner Endowed Professor for Cardiovascular Innovation at Ochsner Health.

Surprisingly, the researchers found that ruptured plaques had increased markers of B-cells, a white blood cell whose role in plaque rupture has not previously been appreciated. 

Previous studies have relied on carotid artery samples obtained after the patient’s death or months after the stroke or heart attack. This either limits the information that can be obtained or misses events that occur only at the time of rupture.

Carotid artery blockage is a common cause of some ischemic strokes, which happens when the blood supply to part of the brain is interrupted, preventing brain tissue from getting necessary oxygen and nutrients. Because the mechanisms that lead to some strokes and most heart attacks involve the same plaque rupture events, these findings also have implications for heart disease.

“Inflammation is a known risk factor in atherosclerosis, leading to stroke and heart attacks,” Bazan said. “Carotid and coronary plaques develop a protective cap that, for unclear reasons, thins, making strokes and heart attacks more likely.”  

The full study is online here.



Journal

Scientific Reports

DOI

10.1038/s41598-022-17546-9

Method of Research

Randomized controlled/clinical trial

Subject of Research

Human tissue samples

Article Title

A pro‐inflammatory and fibrous cap thinning transcriptome profile accompanies carotid plaque rupture leading to stroke

Article Publication Date

5-Aug-2022

COI Statement

The authors declare no competing interests.

Share12Tweet8Share2ShareShareShare2

Related Posts

MIT Study Reveals New Insights into Graphite’s Durability in Nuclear Reactors

MIT Study Reveals New Insights into Graphite’s Durability in Nuclear Reactors

August 15, 2025
Efficient Framework Models Ionic Materials’ Surface Chemistry

Efficient Framework Models Ionic Materials’ Surface Chemistry

August 15, 2025

Discovery of Intrinsic HOTI-Type Topological Hinge States in Photonic Metamaterials

August 15, 2025

Scientists Employ Innovative Technique in Quest to Unveil Elusive Dark Matter Particle

August 15, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Metabolic Inflammation Model Explains Teen Reproductive Issues

Mpox Virus Impact in SIVmac239-Infected Macaques

Epigenetic Mechanisms Shaping Thyroid Cancer Therapy

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.