• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Robotic motion in curved space defies standard laws of physics

Bioengineer by Bioengineer
August 8, 2022
in Chemistry
Reading Time: 3 mins read
0
Experimental realization of a swimmer on a sphere with actuated motors on a freely rotating boom arm.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

When humans, animals, and machines move throughout the world, they always push against something, whether it’s the ground, air, or water. Until recently, physicists believed this to be a constant, following the law of conservation momentum. Now, researchers from the Georgia Institute of Technology have proven the opposite – when bodies exist in curved spaces, it turns out that they can in fact move without pushing against something.

Experimental realization of a swimmer on a sphere with actuated motors on a freely rotating boom arm.

Credit: Georgia Tech

When humans, animals, and machines move throughout the world, they always push against something, whether it’s the ground, air, or water. Until recently, physicists believed this to be a constant, following the law of conservation momentum. Now, researchers from the Georgia Institute of Technology have proven the opposite – when bodies exist in curved spaces, it turns out that they can in fact move without pushing against something.

The findings were published in Proceedings of the National Academy of Sciences on July 28, 2022. In the paper, a team of researchers led by Zeb Rocklin, assistant professor in the School of Physics at Georgia Tech, created a robot confined to a spherical surface with unprecedented levels of isolation from its environment, so that these curvature-induced effects would predominate.

“We let our shape-changing object move on the simplest curved space, a sphere, to systematically study the motion in curved space,” said Rocklin. “We learned that the predicted effect, which was so counter-intuitive it was dismissed by some physicists, indeed occurred: as the robot changed its shape, it inched forward around the sphere in a way that could not be attributed to environmental interactions.”

Creating a Curved Path

The researchers set out to study how an object moved within a curved space. To confine the object on the sphere with minimal interaction or exchange of momentum with the environment in the curved space, they let a set of motors drive on curved tracks as moving masses. They then connected this system holistically to a rotating shaft so that the motors always move on a sphere. The shaft was supported by air bearings and bushings to minimize the friction, and the alignment of the shaft was adjusted with the Earth’s gravity to minimize the residual force of gravity. 

From there, as the robot continued to move, gravity and friction exerted slight forces on it. These forces hybridized with the curvature effects to produce a strange dynamic with properties neither could induce on their own. The research provides an important demonstration of how curved spaces can be attained and how it fundamentally challenges physical laws and intuition designed for flat space. Rocklin hopes the experimental techniques developed will allow other researchers to explore these curved spaces.

Applications in Space and Beyond

While the effects are small, as robotics becomes increasingly precise, understanding this curvature-induced effect may be of practical importance, just as the slight frequency shift induced by gravity became crucial to allow GPS systems to accurately convey their positions to orbital satellites. Ultimately, the principles of how a space’s curvature can be harnessed for locomotion may allow spacecraft to navigate the highly curved space around a black hole.

“This research also relates to the ‘Impossible Engine’ study,” said Rocklin. “Its creator claimed that it could move forward without any propellant. That engine was indeed impossible, but because spacetime is very slightly curved, a device could actually move forward without any external forces or emitting a propellant – a novel discovery.”

Citation: Shengkai Li,  Zeb Rocklin, et al. “Locomotion without force, and impulse via dissipation: Robotic swimming in curved space via geometric phase.” Proceedings of the National Academy of Science. DOI: 2200924119.

About Georgia Institute of Technology

The Georgia Institute of Technology, or Georgia Tech, is a top 10 public research university developing leaders who advance technology and improve the human condition. The Institute offers business, computing, design, engineering, liberal arts, and sciences degrees. Its nearly 40,000 students representing 50 states and 149 countries, study at the main campus in Atlanta, at campuses in France and China, and through distance and online learning. As a leading technological university, Georgia Tech is an engine of economic development for Georgia, the Southeast, and the nation, conducting more than $1 billion in research annually for government, industry, and society.

 



Journal

Proceedings of the National Academy of Sciences

DOI

10.1073/pnas.2200924119

Method of Research

Observational study

Subject of Research

Not applicable

Article Title

Robotic swimming in curved space via geometric phase

Article Publication Date

28-Jul-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.