• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

HKUMed reveals the mechanism of how coronaviruses exploit the host antiviral defense mechanisms for efficient replication

Bioengineer by Bioengineer
August 5, 2022
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine of The University of Hong Kong (HKUMed) revealed insights into the mechanism of how coronaviruses including SARS-CoV-2, SARS-CoV-1, and MERS-CoV exploit a host protease called ‘cysteine-aspartic protease 6’ (caspase-6) for efficient replication. The findings are peer reviewed and recently accepted for publication in the leading scientific journal Nature [link to publication].

cysteine-aspartic protease 6

Credit: The University of Hong Kong

Researchers from Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine of The University of Hong Kong (HKUMed) revealed insights into the mechanism of how coronaviruses including SARS-CoV-2, SARS-CoV-1, and MERS-CoV exploit a host protease called ‘cysteine-aspartic protease 6’ (caspase-6) for efficient replication. The findings are peer reviewed and recently accepted for publication in the leading scientific journal Nature [link to publication].

Background
Upon entering the host cells, the ribonucleic acid (RNA) of coronaviruses will trigger the infected cells to secrete interferons that can inhibit virus replication within the infected cells, and reduce the risk of infection among other uninfected cells. Meanwhile, the host cells will also undergo apoptosis process, a programmed cell death process which will eliminate cells from becoming factories of viral replication. Hence the interferon reaction and apoptosis process are the most important anti-virus mechanisms in human and animal cells.

Apoptosis is executed by cysteine-aspartic protease in human and animal cells, by which infected cells are eradicated to inhibit virus replication. The HKUMed team investigated the impact of caspase-6 on coronavirus replication in a series of cell line, human ex vivo lung tissue, human intestinal organoids, and animal models. The team found that the chemical inhibition or gene depletion of caspase-6 significantly reduced coronavirus replication, while overexpressing caspase-6 efficiently promoted coronavirus replication.  

Research methodology and findings
In a mouse model, chemical inhibitors of caspase-6 dramatically limited mouse-adapted MERS-CoV (MERS-CoVMA) replication and significantly improved the survival of mice from 33.3% to 80%. Moreover, MERS-CoVMA replication and MERS-CoVMA-induced lung damage were markedly reduced in the lungs of caspase-6 knockout mice. Similarly, in a hamster model, the specific chemical inhibitor against caspase-6 reduced SARS-CoV-2 replication and the associated inflammatory lung damage.    

But how does the coronavirus harness caspase-6 to its benefit? Note that the interferon response is the most important and immediate antiviral defence of host cells. Our further investigations revealed that caspase-6 cleaved the coronavirus nucleocapsid (N) proteins, generating N fragments that interact with the host ‘interferon regulatory factor 3 (IRF3)’ and stop it from entering the cell nucleus to initiate the interferon response. Thus, the viral N fragments serve as interferon antagonists, which facilitate virus replication.

Significance of the study
The study shows how coronaviruses have evolved to become very successful pathogens. We reveal a novel mechanism of how coronaviruses overcome the antiviral defence of interferon response by the host cells through the exploitation of a new class of host protease, caspase-6, which is originally used by the host for executing cell apoptosis as a defence against virus infection, for its own purpose of getting better viral replication. These results further suggest that drugs can be designed against caspase-6, which can become a potential target of intervention for the antiviral treatment of all known human coronavirus infections.

About the research team
The research is led by Dr Chu Hin, Assistant Professor; Dr Jasper Chan Fuk-woo, Clinical Associate Professor and Professor Yuen Kwok-yung, Henry Fok Professor in Infectious Diseases, Chair Professor of Department of Microbiology, School of Clinical Medicine, HKUMed, Director of the State Key Laboratory of Emerging Infectious Diseases and Academician of the Chinese Academy of Engineering.

Media enquiries
Please contact LKS Faculty of Medicine of The University of Hong Kong by email ([email protected]).



Journal

Nature

DOI

10.1038/s41586-022-05148-4

Method of Research

Experimental study

Subject of Research

Cells

Article Title

Coronaviruses exploit a host cysteine-aspartic protease for replication

Article Publication Date

3-Aug-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

August 15, 2025
blank

Researchers Identify Molecular “Switch” Driving Chemoresistance in Blood Cancer

August 15, 2025

First Real-Time Recording of Human Embryo Implantation Achieved

August 15, 2025

Ecophysiology and Spread of Freshwater SAR11-IIIb

August 15, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

NIH Grant Supports Innovative Research Targeting the Root Causes of HIV Persistence

Low-Dose Dexamethasone Prevents Paclitaxel Reactions

Unraveling Ion Transport in LISICON Structures

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.