• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Newly identified compound binds to Shiga toxin to reduce its toxicity

Bioengineer by Bioengineer
August 3, 2022
in Chemistry
Reading Time: 4 mins read
0
Structural view of binding between the Stx2a A-subunit and compound #6.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A strain of E. coli bacteria called enterohemorrhagic E. coli (EHEC) is known to cause several gastrointestinal disorders, which include bloody diarrhea and abdominal cramps, by damaging the intestinal lining. When accompanied with fatal systemic complications, it can even cause acute renal failure in children. The EHEC exerts these deadly effects by producing the Shiga toxin (Stx), of which the Stx2a subtype is particularly virulent and deadly. Compounds that can inhibit these toxins are, therefore, desirable as potential therapeutics against EHEC infections.

Structural view of binding between the Stx2a A-subunit and compound #6.

Credit: Image credit: Prof. Kiyotaka Nishikawa from Doshisha University, Japan
Image link: https://www.nature.com/articles/s41598-022-15316-1

A strain of E. coli bacteria called enterohemorrhagic E. coli (EHEC) is known to cause several gastrointestinal disorders, which include bloody diarrhea and abdominal cramps, by damaging the intestinal lining. When accompanied with fatal systemic complications, it can even cause acute renal failure in children. The EHEC exerts these deadly effects by producing the Shiga toxin (Stx), of which the Stx2a subtype is particularly virulent and deadly. Compounds that can inhibit these toxins are, therefore, desirable as potential therapeutics against EHEC infections.

To this end, a group of scientists from Japan led by Professor Kiyotaka Nishikawa from Doshisha University has recently discovered a molecule that inhibits Stx2a toxicity by binding to its “A-subunit” – the part of the toxin responsible for its lethality.

“The catalytic A-subunit of Stx2a toxin inhibits protein synthesis and its inhibition could be crucial for slowing EHEC pathogenesis,” says Prof. Nishikawa, explaining their motivation behind the study, which was published in Scientific Reports. The same group had earlier developed an inhibitory molecule that can bind to the B-subunit of Shiga toxin and reduce its toxicity.

Professor Nishikawa and his colleagues, including Assistant Professor Miho Watanabe-Takahashi of Doshisha University, Dr. Miki Senda and Dr. Toshiya Senda of the Institute of Materials Structure Science at High Energy Accelerator Research Organization (KEK), and Dr. Kentaro Shimizu of the University of Tokyo, among others, identified the potent compound from a database with over 7,400,000 molecules.

To do this, the researchers had to first identify the basic 3D arrangement of molecules (the peptide motif) that can occupy the catalytic cavity in the A-subunit. In a stroke of luck, they stumbled upon a synthetic molecule with a high affinity for A-subunit. This molecule, a peptide called “MMβA-mono,” helped identify the compound that could bind to the A-subunit of Shiga toxin by serving as a template.

The researchers next outlined the molecular and electronic structure that a possible inhibitory compound must have using structural analysis and X-ray crystallography. These features of a potential inhibitor, known as a “pharmacophore,” was then confirmed using molecular dynamics simulations.

Finally, they screened a chemical database for compounds that resembled the pharmacophore and identified nine candidates using docking simulations. Of these, a compound identified as “compound #6” showed effective binding to the A-subunit of Stx2a.

Further, in vitro cytotoxicity assays using Vero cells showed that compound #6 significantly reduced the destruction of cells caused by Stx2a. Additionally, mice models treated with a lethal dose of Stx2a and compound #6 survived longer than those injected with only Stx2a.

Prof. Nishikawa is optimistic about the future applications of this study. On being asked how the compound might work in the infected cells, he explains, “The hydrophobicity of compound #6 may facilitate penetration through the cell envelope, allowing it to inhibit the toxin present in the cells. We believe that it holds promise as a novel therapeutic agent for treating EHEC infections.”

The team has even suggested that their studied pharmacophore could help design more inhibitors for similar toxins, such as the bioterrorism agent ricin, whose catalytic region has a structure similar to that of Stx.

We can certainly expect some new developments in the treatment of intestinal diseases caused by bacteria!

 


About Assistant Professor Miho Watanabe-Takahashi from Doshisha University, Japan
Dr. Miho Watanabe-Takahashi is an Assistant Professor at the Faculty of Life and Medical Sciences in the Department of Medical Life Systems at Doshisha University. She received her Ph.D. from Hoshi University, Japan, in 2006. She works primarily in Life Sciences and Pharmacology with a focus on health and biochemistry. She has 24 peer-reviewed publications in reputed journals and holds several industrial property rights. Her major research interests include Shiga toxin, Endoplasmic Reticulum, Golgi Complex and Pleckstrin Homology Domain.

About Professor Kiyotaka Nishikawa from Doshisha University, Japan
Dr. Kiyotaka Nishikawa is a Professor at the Faculty of Life and Medical Sciences in the Department of Medical Life Systems at Doshisha University. He received his Ph.D. from The University of Tokyo, Japan in 1989. He works primarily in Life Sciences and Pharmacology with a focus on health and biochemistry. He has more than 33 years of experience as a researcher and has 56 publications in peer-reviewed international journals. He also holds several industrial property rights.

Media contact:
Organization for Research Initiatives & Development
Doshisha University
Kyotanabe, Kyoto 610-0394, JAPAN
E-mail:[email protected]

 



Journal

Scientific Reports

DOI

10.1038/s41598-022-15316-1

Method of Research

Experimental study

Subject of Research

Animals

Article Title

A unique peptide-based pharmacophore identifies an inhibitory compound against the A-subunit of Shiga toxin

Article Publication Date

6-Jul-2022

COI Statement

The authors declare no competing interests.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.