• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Computational modeling reveals anatomical distribution of drag on downhill skiers

Bioengineer by Bioengineer
January 17, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Image by Mitch Gunn/Shutterstock

Tsukuba, Japan – Minimizing air resistance and friction with snow is key to elite performance in downhill skiing. Experiments in wind tunnels have revealed the total drag experienced by skiers, but have not provided precise data on which parts of the body cause the most air resistance when adopting the full-tuck position.

A new study published in the European Journal of Physics reports the findings of a research team at the University of Tsukuba that established a new computational modeling approach that provides precise 3D data on air flow, vortex formation, and lift around a skier's body. This has expected utility for designing better ski equipment and determining the ideal posture to adopt during skiing.

As downhill skiers can exceed speeds of 120 km/h, they are subjected to high levels of air resistance, and must adopt a tuck position to reduce this. However, at elite levels, where podium places can be separated by hundredths of a second, miniscule differences in air resistance can be extremely important, so much effort has been expended on modeling and reducing this.

The University of Tsukuba team has advanced this field of study by establishing a novel approach to computational modeling of air flow alongside wind tunnel experiments. Wind tunnel experiments using a mannequin provided total drag data at different air flow speeds, which were used to validate the computer simulations. In the novel computer simulations, a type of computational fluid dynamics analysis called the lattice Boltzmann method was applied, in which a 3D grid was created to model air flow at and around the surface of the skier's body.

"The lattice Boltzmann method allowed us to identify regions of low air flow and places where vortices of air flow formed," study coauthor Sungchan Hong says. "Because of the precision of this simulation, in contrast to wind tunnel experiments, we could show that the head, upper arms, upper legs, and thighs are particular sources of drag."

The validity of the results was supported by the high correlation between the empirical results of total drag on the skier mannequin in a wind tunnel and corresponding data in the computer simulations.

"Now we know which parts of the body have the greatest effects of slowing a skier down, we can design equipment to reduce the air resistance associated with this, and also suggest small changes to a skier's posture that could increase speed," lead author Takeshi Asai says.

The team intends to extend this work by applying the new approach to various skiing postures adopted during different parts of a race, and by using different models of turbulence to increase the reliability of their results.

###

The article "Flow visualization of downhill skiers using the lattice Boltzmann method" was published in the European Journal of Physics at doi: 10.1088/1361-6404/38/2/024002

Media Contact

Masataka Watanabe
[email protected]
81-298-532-039

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Three Health Tech Innovators Honored for Pioneering Digital Solutions Revolutionizing Cardiovascular Care

November 4, 2025
blank

Digital Divide Shrinks, Yet Gaps Persist for Australians Amidst Surge in GenAI Adoption

November 4, 2025

PRMT1: Key Survival Target in Myeloma

November 4, 2025

Lymphocyte Traits Predict Advanced Lung Cancer Outcomes

November 4, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1297 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Three Health Tech Innovators Honored for Pioneering Digital Solutions Revolutionizing Cardiovascular Care

Digital Divide Shrinks, Yet Gaps Persist for Australians Amidst Surge in GenAI Adoption

PRMT1: Key Survival Target in Myeloma

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.