• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Computational modeling reveals anatomical distribution of drag on downhill skiers

Bioengineer by Bioengineer
January 17, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Image by Mitch Gunn/Shutterstock

Tsukuba, Japan – Minimizing air resistance and friction with snow is key to elite performance in downhill skiing. Experiments in wind tunnels have revealed the total drag experienced by skiers, but have not provided precise data on which parts of the body cause the most air resistance when adopting the full-tuck position.

A new study published in the European Journal of Physics reports the findings of a research team at the University of Tsukuba that established a new computational modeling approach that provides precise 3D data on air flow, vortex formation, and lift around a skier's body. This has expected utility for designing better ski equipment and determining the ideal posture to adopt during skiing.

As downhill skiers can exceed speeds of 120 km/h, they are subjected to high levels of air resistance, and must adopt a tuck position to reduce this. However, at elite levels, where podium places can be separated by hundredths of a second, miniscule differences in air resistance can be extremely important, so much effort has been expended on modeling and reducing this.

The University of Tsukuba team has advanced this field of study by establishing a novel approach to computational modeling of air flow alongside wind tunnel experiments. Wind tunnel experiments using a mannequin provided total drag data at different air flow speeds, which were used to validate the computer simulations. In the novel computer simulations, a type of computational fluid dynamics analysis called the lattice Boltzmann method was applied, in which a 3D grid was created to model air flow at and around the surface of the skier's body.

"The lattice Boltzmann method allowed us to identify regions of low air flow and places where vortices of air flow formed," study coauthor Sungchan Hong says. "Because of the precision of this simulation, in contrast to wind tunnel experiments, we could show that the head, upper arms, upper legs, and thighs are particular sources of drag."

The validity of the results was supported by the high correlation between the empirical results of total drag on the skier mannequin in a wind tunnel and corresponding data in the computer simulations.

"Now we know which parts of the body have the greatest effects of slowing a skier down, we can design equipment to reduce the air resistance associated with this, and also suggest small changes to a skier's posture that could increase speed," lead author Takeshi Asai says.

The team intends to extend this work by applying the new approach to various skiing postures adopted during different parts of a race, and by using different models of turbulence to increase the reliability of their results.

###

The article "Flow visualization of downhill skiers using the lattice Boltzmann method" was published in the European Journal of Physics at doi: 10.1088/1361-6404/38/2/024002

Media Contact

Masataka Watanabe
[email protected]
81-298-532-039

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.