• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Timothy Huang awarded $2.8M to study well-known gene linked to Alzheimer’s disease

Bioengineer by Bioengineer
August 2, 2022
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

LA JOLLA, CALIF. – Aug 02, 2022 – Timothy Huang, Ph.D., has been awarded $2.8 million by the National Institute on Aging (NIA) to continue his work on Alzheimer’s disease. The four-year project will use human stem cells transplanted into mice to determine the role of specific Alzheimer’s-related gene mutations in the brain. 

Timothy Huang, Ph.D.

Credit: Sanford Burnham Prebys

LA JOLLA, CALIF. – Aug 02, 2022 – Timothy Huang, Ph.D., has been awarded $2.8 million by the National Institute on Aging (NIA) to continue his work on Alzheimer’s disease. The four-year project will use human stem cells transplanted into mice to determine the role of specific Alzheimer’s-related gene mutations in the brain. 

“There is a lot of evidence connecting certain genes to Alzheimer’s, but the role that individual gene mutations play in the brain remains unclear,” says Huang, an assistant professor in the Degenerative Diseases Program at Sanford Burnham Prebys. “Figuring out these specifics is key to uncovering new approaches to prevent and treat Alzheimer’s.”

One of the defining characteristics of Alzheimer’s disease is the accumulation of proteins in the brain called amyloid proteins. Huang and his team will be studying a gene called SORLA, which helps regulate how much amyloid protein is able to accumulate.

“Researchers are starting to uncover the links between SORLA and Alzheimer’s, but there is a lot more work to do before we can start leveraging that into treatments.” 

The team is zeroing in on the link between SORLA and a specific type of brain cell called microglia, which accounts for about 15% of the cells in our central nervous system. Microglia are protective maintenance cells, guarding against pathogens and recycling dead or damaged neurons. 

“We need microglia to keep our brain functioning, but as we age, microglia may change in ways that are harmful in response to disease,” says Huang. “Microglia activation is a prominent feature of Alzheimer’s disease pathology, so we’re figuring out how this happens and what this means during onset.”

The new project will explore how different mutations in the SORLA gene impact the function of microglia and may contribute to the development of Alzheimer’s disease. To do so, the team will transplant microglia derived from human stem cells into lab mice, allowing the researchers to see how these changes occur in a living organism as opposed to within a petri dish. 

“We want to figure out if there’s a pathogenic link between the SORLA gene and what happens to microglia in Alzheimer’s,” says Huang. “If we can find that link, it will arm us with more tools to tackle the disease, which is the ultimate endgame for Alzheimer’s research.”

The grant, awarded by the National Institute on Aging of the National Institutes of Health, is titled “Elucidating a Microglia-Associated Role for SORLA in Modulating AD Pathogenesis” (RF1 AG070391).

###

About Sanford Burnham Prebys

Sanford Burnham Prebys is a preeminent, independent biomedical research institute dedicated to understanding human biology and disease and advancing scientific discoveries to profoundly impact human health. For more than 40 years, our research has produced breakthroughs in cancer, neuroscience, immunology and children’s diseases, and is anchored by our NCI-designated Cancer Center and advanced drug discovery capabilities. For more information, visit us at SBPdiscovery.org or on Facebook facebook.com/SBPdiscovery and on Twitter @SBPdiscovery.



Share12Tweet8Share2ShareShareShare2

Related Posts

Microbial Molecule Discovered to Restore Liver and Gut Health, Scientists Report

Microbial Molecule Discovered to Restore Liver and Gut Health, Scientists Report

August 12, 2025
Pew Backs 10 Latin American Fellows Driving Scientific Innovation

Pew Backs 10 Latin American Fellows Driving Scientific Innovation

August 12, 2025

Pew Awards Biomedical Science Grants to 22 Researchers

August 12, 2025

Genetically Engineered Mouse Model Sheds Light on Genetic Bone Disorders

August 12, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    78 shares
    Share 31 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ultrafast Untethered Levitation Device Harnesses Squeeze Film for Omni-Directional Transport

Sun Explores New Avenues in Software Vulnerability Detection and Remediation

New Multidimensional COPD Diagnosis Uncovers Previously Overlooked At-Risk Patients

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.