• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Towards High-Quality Manganese Oxide Catalysts with Large Surface Areas

Bioengineer by Bioengineer
July 25, 2022
in Chemistry
Reading Time: 3 mins read
0
Facile Synthesis of Manganese Oxide Nanoparticles with High Surface Area and Catalytic Activity
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Manganese oxides have received much attention from materials scientists due to their widespread applications including electrodes, catalysts, sensors, supercapacitors, and biomedicine. Further, manganese is widely abundant and has many oxidation states, which allows it to form various interesting crystalline structures.

Facile Synthesis of Manganese Oxide Nanoparticles with High Surface Area and Catalytic Activity

Credit: Tokyo Tech

Manganese oxides have received much attention from materials scientists due to their widespread applications including electrodes, catalysts, sensors, supercapacitors, and biomedicine. Further, manganese is widely abundant and has many oxidation states, which allows it to form various interesting crystalline structures.

One such structure is the “todorokite-type manganese oxide octahedral molecular sieve (OMS-1),” a crystal whose unit cells (simplest repeating units of the crystal) consist of three-by-three MnO6 octahedral chains. Though promising as a catalyst, the potential of OMS-1 is limited by two reasons. First, its conventional synthesis methods are complex multi-step crystallization processes involving hydrothermal or reflux treatment. Second, these processes tend to create crystals with a higher particle size and a lower surface area, features detrimental to catalytic performance.

In a recent effort to circumvent these problems, a research team from Tokyo Institute of Technology (Tokyo Tech) came up with a simple way to synthesize OMS-1 nanoparticles. Led by Associate Professor Keigo Kamata, the team discovered that the key to easily producing high-quality OMS-1 was to use precursors with low crystallinity. Their study was published in the Journal of the American Chemical Society. Additionally, the scientific illustration of this study, created by Dr. Kamata, was selected as a Supplementary Cover Art for the journal.

The researchers called their novel synthesis procedure the “solid-state transformation method.” In it, one first needs to combine solutions of MnO4– and Mn2+ reagents, such as Mg(MnO4)2 and MnSO4, at specific ratios. After adjusting the pH of the mixture, one needs to collect the precipitates once they settle. These mainly consist of low-crystallinity Mg-buserite, a type of layered manganese oxide. The buserite is then calcinated at 200°C for 24 hours, which transforms it into OMS-1 nanoparticles.

Through various experiments performed using advanced equipment, the team thoroughly characterized the OMS-1 they produced. They determined the optimal parameters to obtain the highest yield of the reaction and the best quality OMS-1. A remarkable aspect of the prepared OMS-1 nanoparticles was their surface area, as highlighted by Dr. Kamata: “Our catalyst exhibited a specific surface area of about 250 m2/g, which is much larger than that of OMS-1 synthesized using previously reported methods, which only went up to 185 m2/g.”

To put the synthesized OMS-1 to the test, the researchers investigated its catalytic performance for various alcohol oxidation reactions with oxygen (O2) as the only oxidant. The results were highly encouraging. Dr. Kamata comments: “The OMS-1 synthesized through our approach is an effective and reusable heterogeneous catalyst for the oxidation of various types of aromatic alcohols and sulfides. Despite our nanoparticles being ultra-small, they exhibited no trade-off between surface area, particle size, and catalytic performance.”

Overall, the findings of this study shed light on how to better control the synthesis of manganese oxide nanoparticles. These insights will hopefully lead not only to highly efficient catalysts but also to novel manganese oxide-based functional materials with practical applications.



Journal

Journal of the American Chemical Society

DOI

10.1021/jacs.2c02308

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Synthesis and Aerobic Oxidation Catalysis of Mesoporous Todorokite-type Manganese oxides Nanoparticles by Crystallization of Precursors

Article Publication Date

20-Jul-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Assessing Liquefaction Resistance in Chemically Treated Soils Using Cyclic Triaxial Testing

Assessing Liquefaction Resistance in Chemically Treated Soils Using Cyclic Triaxial Testing

September 15, 2025
Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Rice Scientists Innovate ‘Molecular Magnifying Glass’ to Detect Plant Diseases Earlier

AI Algorithm Using Routine Mammograms and Age Accurately Predicts Major Cardiovascular Disease Risk in Women

Assessing Liquefaction Resistance in Chemically Treated Soils Using Cyclic Triaxial Testing

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.