• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Human eggs remain healthy for decades by putting ‘batteries on standby mode’

Bioengineer by Bioengineer
July 20, 2022
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Immature human egg cells skip a fundamental metabolic reaction thought to be essential for generating energy, according to the findings of a study by researchers at the Centre for Genomic Regulation (CRG) published today in the journal Nature.

Absence of reactive oxygen species shown in oocytes

Credit: Aida Rodriguez/Nature

Immature human egg cells skip a fundamental metabolic reaction thought to be essential for generating energy, according to the findings of a study by researchers at the Centre for Genomic Regulation (CRG) published today in the journal Nature.

By altering their metabolic activity, the cells avoid creating reactive oxygen species, harmful molecules that can accumulate, damage DNA and cause cell death. The findings explain how human egg cells remain dormant in ovaries for up to 50 years without losing their reproductive capacity.

“Humans are born with all the supply of egg cells they have in life. As humans are also the longest-lived terrestrial mammal, egg cells have to maintain pristine conditions while avoiding decades of wear-and-tear. We show this problem is solved by skipping a fundamental metabolic reaction that is also the main source of damage for the cell. As a long-term maintenance strategy, its like putting batteries on standby mode. This represents a brand new paradigm never before seen in animal cells,” says Dr. Aida Rodriguez, postdoctoral researcher at the CRG and first author of the study.

Human eggs are first formed in the ovaries during foetal development, undergoing different stages of maturation. During the early stages of this process, immature egg cells known as oocytes are put into cellular arrest, remaining dormant for up to 50 years in the ovaries. Like all other eukaryotic cells, oocytes have mitochondria – the batteries of the cell – which they use to generate energy for their needs during this period of dormancy.

Using a combination of live imaging, proteomic and biochemistry techniques, the authors of the study found that mitochondria in both human and Xenopus oocytes use alternative metabolic pathways to generate energy never before seen in other animal cell types.

A complex protein and enzyme known as complex I is the usual ‘gatekeeper’ that initiates the reactions required to generate energy in mitochondria. This protein is fundamental, working in the cells that constitute living organisms ranging from yeast to blue whales. However, the researchers found that complex I is virtually absent in oocytes. The only other type of cell known to survive with depleted complex I levels are all the cells that make up the parasitic plant mistletoe.

According to the authors of the study, the research explains why some women with mitochondrial conditions linked to complex I, such as Leber’s Hereditary Optic Neuropathy, do not experience reduced fertility compared to women with conditions affecting other mitochondrial respiratory complexes.

The findings could also lead to new strategies that help preserve the ovarian reserves of patients undergoing cancer treatment. “Complex I inhibitors have previously been proposed as a cancer treatment. If these inhibitors show promise in future studies, they could potentially target cancerous cells while sparing oocytes,” explains Dr. Elvan Böke, senior author of the study and Group Leader in the Cell & Developmental Biology programme at the CRG.

Oocytes are vastly different to other types of cells because they have to balance longevity with function. The researchers plan to continue this line of research and uncover the energy source oocytes use during their long dormancy in the absence of complex I, with one of the aims being to understand the effect of nutrition on female fertility.

“One in four cases of female infertility are unexplained – pointing to a huge gap of knowledge in our understanding of female reproduction. Our ambition is to discover the strategies (such as the lack of complex I ) oocytes employ to stay healthy for many years in order to find out why these strategies eventually fail with advanced age” concludes Dr. Böke.



Journal

Nature

DOI

10.1038/s41586-022-04979-5

Method of Research

Experimental study

Subject of Research

Human tissue samples

Article Title

Oocytes maintain ROS-free mitochondrial metabolism by suppressing complex I

Article Publication Date

20-Jul-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

The Active Role of Repetitive DNA in the Human Brain Uncovered

The Active Role of Repetitive DNA in the Human Brain Uncovered

August 25, 2025
Durable and Efficient H2 Evolution Achieved with Strongly Coupled Pt–N-Mo Cluster Heterostructure in Anion-Exchange Membrane Electrolyzers

Durable and Efficient H2 Evolution Achieved with Strongly Coupled Pt–N-Mo Cluster Heterostructure in Anion-Exchange Membrane Electrolyzers

August 25, 2025

Sugars Signal Guard Cell Ion Transport in Red Light

August 25, 2025

Innovative 3D-Printed Scaffolds Pave the Way for Spinal Cord Injury Recovery

August 25, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    143 shares
    Share 57 Tweet 36
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Carbon nanotube ‘stitches’ make stronger, lighter composites

Revolutionary Cyclic Thioether Additive Boosts Lithium Metal Batteries to 3,000 Stable Cycles!

Breakthroughs in Screening Techniques and Point-of-Care Diagnostics Transform Colorectal Cancer Detection

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.