• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Scientists reveal non-addictive pathway to pain relief

Bioengineer by Bioengineer
January 14, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

OHSU research suggests an avenue for developing treatments for chronic pain that harness the medicinal properties of cannabis while minimizing the threat of addiction.

The study, conducted in a rodent model, provides additional rationale for the development of therapeutics using cannabinoid receptors to treat chronic pain, which afflicts about 30 percent of the U.S. population. OHSU investigators studied the function of two forms of cell membrane receptors that bind cannabinoids that occur naturally within the body, called endocannabinoids.

"It may be an avenue where we can get better pain medications that are not addictive," said senior author Susan Ingram, Ph.D., an associate professor of neurosurgery in the OHSU School of Medicine.

Ingram and colleagues report the treatment of chronic pain has challenged the medical system, with medications that are ineffective or create serious side effects: "However, emerging data indicate that drugs that target the endocannabinoid system might produce analgesia with fewer side effects compared with opioids."

The body's endocannabinoid system comprises receptors, endocannabinoid molecules and enzymes that make and degrade the endocannabinoids located in the brain and throughout the central and peripheral nervous system. The research team focused on two cannabinoid receptors, known as CB1 and CB2, in the rostral ventromedial medulla – a group of neurons located in the brainstem known to modulate pain. The study is the first to examine CB1 and CB2 receptor function at the membrane level in late adolescent and adult neurons.

The researchers observed that chronic inflammatory pain increased activity of CB2 receptors and decreased CB1 activity. Cannabis activates both CB1 and CB2 receptors equally. The study suggests that selective activation of CB2 receptors contributes to the medicinal benefit of cannabis while minimizing the propensity of the other cannabinoid receptor, CB1, to induce tolerance and withdrawal. Ingram said the next phase of the research will further explore this area of brain circuitry, which ultimately could lead to the development of a new class of pain medications.

###

Co-authors include lead author Ming-Hua Li, Ph.D., and Katherine L. Suchland, both with the Department of Neurological Surgery, OHSU School of Medicine.

The study was funded by grants from the National Institutes of Health (DA035316 and R56NS093894) and American Heart Association (13SDG14590005, MH.L.).

Media Contact

Erik Robinson
[email protected]
503-494-7986
@ohsunews

http://www.ohsu.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.