• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The beginning of life: The early embryo is in the driver’s seat

Bioengineer by Bioengineer
July 7, 2022
in Biology
Reading Time: 4 mins read
0
A mouse blastoid fluorescently stained for various cellular components
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

One often thinks that the early embryo is fragile and needs support. However, at the earliest stages of development, it has the power to feed the future placenta and instructs the uterus so that it can nest. Using ‘blastoids’, in vitro embryo models formed with stem cells, the Lab of Nicolas Rivron at IMBA showed that the earliest molecular signals that induce placental development and prepare the uterus come from the embryo itself. The findings, now published in Cell Stem Cell, could contribute to a better understanding of human fertility.

A mouse blastoid fluorescently stained for various cellular components

Credit: ©Rivron/CellStemCell/IMBA

One often thinks that the early embryo is fragile and needs support. However, at the earliest stages of development, it has the power to feed the future placenta and instructs the uterus so that it can nest. Using ‘blastoids’, in vitro embryo models formed with stem cells, the Lab of Nicolas Rivron at IMBA showed that the earliest molecular signals that induce placental development and prepare the uterus come from the embryo itself. The findings, now published in Cell Stem Cell, could contribute to a better understanding of human fertility.

 

Who takes care of whom at the onset of life? The placenta and the uterus nurture and shelter the fetus. But the situation at the very early stage of development, when the blastocyst still floats in the uterus, was unclear so far. Now, the research group of Nicolas Rivron at IMBA (Institute of Molecular Biotechnology of the Austrian Academy of Sciences) uncovered basic principles of early development using blastoids.

Blastoids are in vitro models of the blastocyst, the mammalian embryo in the first few days following fertilization. These embryo models were first developed by the Rivron lab from mouse stem cells (Nature, 2018) and then from human stem cells (Nature, 2021). Blastoids provide an ethical alternative to the use of embryos for research and, importantly, enable multiple discoveries.

Now, blastoids settled a “chicken or egg” dilemma. Using mouse blastoids, the researchers found that the early embryonic part (~10 cells) instructs the future placental part (~100 cells) to form, and the uterine tissues to change. “By doing this, the embryo invests in its own future: it promotes the formation of the tissues that will soon take care of its development. The embryo is in control, instructing the creation of a supporting surrounding,” states Nicolas Rivron.

Indeed, the team discovered several molecules secreted by the few cells from which the fetus develops, the epiblasts. They observed that these molecules tell other cells, the trophoblasts that later form the placenta, to self-renew and proliferate, two stem cell properties that are essential for the placenta to grow.

The team also found that these molecules induce the trophoblasts to secrete two other molecules, WNT6 and WNT7B. WNT6 and WNT7B tell the uterus to wrap around the blastocyst. “Other researchers had previously seen that WNT molecules are involved in the uterine reaction. Now we show that these signals are WNT6/7B and that they are produced by the blastocyst trophoblasts to notify the uterus to react. The relevance could be high because we have verified that these two molecules are also expressed by the trophoblasts of the human blastocyst,” states Nicolas Rivron.

The team made their findings partly by examining the extent of implantation of the mouse blastoids in an in vivo implantation mouse model. “I was very surprised by the efficiency at which our blastoids implanted into the uterus. And by changing the properties of the trophoblasts within blastoids, including the secretion levels of WNT6/7B, we could clearly change the size of the uterine cocoon,” says co-first author Jinwoo Seong, a postdoctoral fellow in the Rivron lab, who performed these experiments.

Because implantation is the bottleneck in human pregnancies – around 50 percent of pregnancies fail at that time – and WNT6 and WNT7B are also present in human blastocysts, these findings might explain why, sometimes, things go wrong. “We are currently repeating these experiments with human blastoids and uterine cells, all in a dish, to estimate the conservation of such basic principles of development. These discoveries might ultimately contribute to improving IVF procedures, developing fertility drugs, and contraceptives” says Nicolas Rivron.

The teamwork was also driven by two other co-first authors: Javier Frías Aldeguer, a former Ph.D. student, and Viktoria Holzmann, a current Ph.D. student. “Understanding these fundamental principles of embryonic development will ultimately contribute to empowering women to have a better grip on their fertility, which would not only improve family planning but also impact gender equality in society,” says Viktoria Holzmann.

 

Original publication:

Seong J, Frias-Aldeguer J, Holzmann V, et al. „Epiblast inducers capture Trophectoderm Stem Cells in vitro and pattern blastoids for implantation in utero”, 2022 Cell Stem Cell. DOI: https://doi.org/10.1016/j.stem.2022.06.002



Journal

Cell Stem Cell

DOI

10.1016/j.stem.2022.06.002

Method of Research

Experimental study

Subject of Research

Lab-produced tissue samples

Article Title

Epiblast inducers capture Trophectoderm Stem Cells in vitro and pattern blastoids for implantation in utero

Article Publication Date

7-Jul-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Boosting Ovalbumin Secretion by Reducing ER Stress

Boosting Ovalbumin Secretion by Reducing ER Stress

November 18, 2025
blank

METTL21C Gene Markers Linked to Pig Umbilical Hernia

November 18, 2025

Exploring Aluminum’s Role in Campo Rupestre Melastomataceae

November 18, 2025

ML Unlocks Key SNPs for Population Assignment

November 18, 2025

POPULAR NEWS

  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    211 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    118 shares
    Share 47 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    89 shares
    Share 36 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cultural Adaptation in Autism Services: A Study

Stable Brain Imaging of Pancreatic Islets in Mice

Diffusion Coefficient: New Marker for Retinoblastoma Progression

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.