• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Ronald Koder-led CCNY team creates first ever VX neurotoxin detector

Bioengineer by Bioengineer
July 6, 2022
in Chemistry
Reading Time: 2 mins read
0
VX detecting protein
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

City College of New York associate professor of physics Ronald Koder and his team at the Koder Lab are advancing the field of molecular detection by developing the first proteins that can detect a deadly nerve agent called VX in real-time and without false positives from insecticides.

VX detecting protein

Credit: Koder Lab/CCNY

City College of New York associate professor of physics Ronald Koder and his team at the Koder Lab are advancing the field of molecular detection by developing the first proteins that can detect a deadly nerve agent called VX in real-time and without false positives from insecticides.

VX is classified as a neurotoxin and an incredibly deadly chemical warfare agent that has been used in assassinations by some nations. It can cause permanent brain damage in those who survive exposure. 

These potentially life-saving findings are published in the July 2022 edition of “Science Advances,” with lab member Jim McCann serving as the paper’s primary author. It outlines the design of two proteins that detect the neurotoxin by changing their shape in the presence of VX.

In collaboration with Douglas Pike and Vikas Nanda at Rutgers University, the CCNY team used a protein design program called ProtCAD to design 20 different proteins. According to Koder, the computer code was new and unlike anything the team had previously worked with, so it came as a bit of a surprise that two of their protein designs worked rather quickly. 

“Having the first thing we tried with a small molecule actually just work was pretty great,” Koder said. “In that absence of VX, all of the negative charges repel each other and then the protein unfolds. And it really extends, almost like a stick. When the protein binds VX it wraps all the way around the molecule becoming much more compact.”

Previous detectors for this type of molecule often produced false positives from chemicals like insecticides. This new design can help prevent those misleading results, by scanning the entire molecular surface down to one hundred-millionth of a centimeter.

“We get this remarkable specificity because we’re making contact with the whole molecule,” said Koder.

This work adds to a rapidly advancing field of biosensing technology used to detect the presence of incredibly small molecules called biomarkers.

The project was funded by the Air Force Civil Engineering Center/Defense Threat Reduction Agency in collaboration with The City University of New York, Clarkson University and Rutgers University. 



Journal

Science Advances

Method of Research

Experimental study

Subject of Research

Cells

Article Title

Computational design of a sensitive, selective phase-changing sensor protein for the VX nerve agent

Article Publication Date

6-Jul-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Thiophene-Doped Fully Conjugated Covalent Organic Frameworks Boost Photocatalytic Hydrogen Peroxide Production Efficiency

October 28, 2025
blank

Climate impacts of biochar and hydrochar differ in boreal grasslands

October 27, 2025

Cracking the Code of ‘Sticky’ Chemistry: A Path to Cleaner, More Efficient Fuels

October 27, 2025

Exploring the Role of Water-Soluble Polymers in Wastewater Treatment

October 27, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1286 shares
    Share 514 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    197 shares
    Share 79 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Peak Rush Hour and Lack of Dedicated Infrastructure Contribute to Increase in Cycling Near Misses in London

Study Finds Connection Between Outdoor Air Pollution and Increased Breast Cancer Risk

Thiophene-Doped Fully Conjugated Covalent Organic Frameworks Boost Photocatalytic Hydrogen Peroxide Production Efficiency

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.