• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Pollution exposure associated with multimorbidity risk

Bioengineer by Bioengineer
June 29, 2022
in Health
Reading Time: 3 mins read
0
Air pollution in Shanghai, China.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Exposure to the air pollution known as fine particulate matter (PM2.5) is associated with an increased risk of having a cluster of multiple chronic diseases, according to a new study published this week in the open-access journal PLOS Global Public Health by Kai Hu of University of St. Andrews, UK, and colleagues.

Air pollution in Shanghai, China.

Credit: Photoholgic, Unsplash, CC0 (https://creativecommons.org/publicdomain/zero/1.0/)

Exposure to the air pollution known as fine particulate matter (PM2.5) is associated with an increased risk of having a cluster of multiple chronic diseases, according to a new study published this week in the open-access journal PLOS Global Public Health by Kai Hu of University of St. Andrews, UK, and colleagues.

Previous studies have provided abundant evidence on the association between air pollution and individual chronic diseases. Although chronic diseases tend to cluster due to shared biological or environmental risk factors, there has been a limited understanding of how air pollution might promote the accumulation of multiple chronic diseases.

In the new study, the researchers used data on 19,098 respondents of the China Health and Retirement Longitudinal Study (CHARLS) surveys from 2011 to 2015, as well as historical satellite data on PM2.5 exposure over 15 years. Participants were people aged 45 to 85 from 125 cities across China.

When the team modeled the associations between self-reported chronic disease diagnosis and PM2.5 exposure, the data revealed four distinct groups of multimorbidity, with patients sorting into respiratory, musculoskeletal, cardio-metabolic, or healthy clusters. The analysis showed that a 1µg/m3 increase in cumulative exposure to PM2.5 over 15 years was associated with a 2.4 percent (95% CI 1.02-1.03) increased chance of belonging to the respiratory cluster, a 1.5 percent (95% CI 1.01-1.02) increased chance of belonging to the musculoskeletal cluster, and a 3.3 percent (95% CI 1.03-1.04) increased chance of belonging to the cardio-metabolic cluster. However, the models also showed a U-shaped association, with both lower and higher PM2.5 exposure associated with increased multimorbidity. The increased multimorbidity at the low end of the spectrum may be due to differences in rural-urban living and economic development, the authors hypothesized.

The results are limited by the fact that only 4 years of health data were available, but the authors concluded that current PM2.5 levels are harmful to human health among the majority of Chinese adults, and that for most low and middle income countries, efforts to reduce PM2.5 would likely be associated with a substantial reduction in the burden of multiple diseases.

The authors add: “Both lower and higher historical PM2.5 exposure is associated with faster multimorbidity accumulation. However, higher exposure to PM2.5 is associated with a higher risk of developing cardio-metabolic and respiratory multimorbidity (dominated by lung disease), whereas lower PM2.5 exposure is associated with a higher likelihood of musculoskeletal multimorbidity.”

#####

In your coverage please use this URL to provide access to the freely available article in PLOS Global Public Health: https://journals.plos.org/globalpublichealth/article?id=10.1371/journal.pgph.0000520

Citation: Hu K, Keenan K, Hale JM, Liu Y, Kulu H (2022) A longitudinal analysis of PM2.5 exposure and multimorbidity clusters and accumulation among adults aged 45-85 in China. PLOS Glob Public Health 2(6): e0000520. https://doi.org/10.1371/journal.pgph.0000520

Author Countries: U.K., U.S.A.

Funding: This study is supported by China Scholarship Council (CSC No. 201703780011), People’s Republic of China, and Population and Health Research Group (PHRG), School of Geography and Sustainable Development, University of St Andrews, United Kingdom. PM2.5 data in this study is from the work of Yang Liu, supported by the National Institute of Environmental Health Sciences of the National Institutes of Health, USA (Grant No. 1R01ES032140). This study is also supported by the Centre for Population Change (CPC) (ES/R009139/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.



Journal

PLOS Global Public Health

DOI

10.1371/journal.pgph.0000520

Method of Research

Survey

Subject of Research

People

Article Title

A longitudinal analysis of PM2.5 exposure and multimorbidity clusters and accumulation among adults aged 45-85 in China

Article Publication Date

29-Jun-2022

COI Statement

The authors have declared that no competing interests exist.

Share12Tweet8Share2ShareShareShare2

Related Posts

Carers in Australia: Blessings and Challenges Explored

October 4, 2025

Herbal Remedies for Hypertension: Insights from Trinidad

October 4, 2025

Impact of Triglyceride-Glucose Index on Neonatal Health

October 4, 2025

Decoding MAG, PTEN, NOTCH1 in Axonal Regeneration

October 4, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    69 shares
    Share 28 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Carers in Australia: Blessings and Challenges Explored

Gut Microbiome and Hormones in Postmenopausal Breast Cancer

Herbal Remedies for Hypertension: Insights from Trinidad

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.