• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

COVID’s Catch-22: The paradox of masking and disease

Bioengineer by Bioengineer
June 23, 2022
in Health
Reading Time: 3 mins read
0
The paradox of masking and disease
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Much research has been done on the effectiveness of masks to mitigate the spread of infectious diseases. However, standard infection models tend to focus only on disease states, overlooking the dynamics of a complex paradox: While masking reduces transmission rates and consequently disease prevalence, the reduction of disease inhibits mask-wearing — thereby promoting epidemic revival.

The paradox of masking and disease

Credit: Yoav Aziz

Much research has been done on the effectiveness of masks to mitigate the spread of infectious diseases. However, standard infection models tend to focus only on disease states, overlooking the dynamics of a complex paradox: While masking reduces transmission rates and consequently disease prevalence, the reduction of disease inhibits mask-wearing — thereby promoting epidemic revival.

To investigate this bidirectional relationship, a team of researchers led by the University of Virginia*, developed a multi-contagion framework and intertwined a threshold model for mask-wearing behavior, or “social contagions,” with an epidemic model. The threshold model accounts for various behavioral mechanisms that influence mask-wearing, such as peer pressure, fear of infection, elite influence, and prosociality.

In their paper published in the Proceedings of the National Academy of Sciences, the researchers posit that the final epidemic size (or attack rate) of a disease exhibits a critical transition when populations assume the disease spreading is more infectious, triggering a sustained massive response of mask adoption which sharply decreases the final epidemic size. 

The conundrum is that when disease rates are low, mask-wearing becomes an afterthought, and a less infectious disease could cause a higher attack rate than its more infectious counterparts.

Results highlight that without proper enforcement of masking, reduction in the disease transmission probability via other interventions — such as mass vaccination — may not be sufficient to reduce the final epidemic size. This was the case in a resurgence of COVID-19 cases in the United States after vaccinations when the number of new daily cases jumped by approximately an order of magnitude from early June 2021 to early September 2021.

“Interdisciplinary models are absolutely critical for helping refine our assumptions,” says Santa Fe Institute Fellow Stefani Crabtree (Utah State University), who contributed to the research. “The findings have helped me to not bow to peer pressure. I’m still masking at grocery stores and in crowded areas because, even though I am vaccinated, I know it will help.” 

In their study, the researchers described mask-wearing as a “complex contagion” whose adoption requires multiple interactions and sources of reinforcement to produce the “contagion” and help model behavioral adoption (switching from masked to unmasked and vice versa). This is opposite to disease transmission for which a single contagion would be enough to transmit the disease.

While mandatory masking may be viewed as cumbersome and expensive, mathematical models incorporating individual adaptive human behavior during epidemics have shown the essential role of continuous reinforcement of masking in minimizing epidemics.

“An even larger issue to tackle is how polarized our society is,” says SFI External Professor Simon Levin (Princeton University), a co-author on the paper. “I have never in my lifetime seen individuals so divided over something I consider commonsense public health measures.”

*Authors include a prestigious international team of researchers from the University of Virginia; University of Amsterdam; Princeton University; Northeastern University; Utah State University; Santa Fe Institute; Stockholm School of Economics; and Cornell University.



Journal

Proceedings of the National Academy of Sciences

DOI

10.1073/pnas.21233551

Method of Research

Computational simulation/modeling

Subject of Research

People

Article Title

Understanding the coevolution of mask wearing and epidemics: A network perspective

Article Publication Date

24-Jun-2022

COI Statement

No COI

Share12Tweet8Share2ShareShareShare2

Related Posts

Tamibarotene Drives Neuroblastoma Cell Differentiation via PI3K/AKT

September 5, 2025

Unveiling KRTAP5-AS1/miR-199b-5p/CYP19A1 in PCOS

September 5, 2025

Navigating Physician-Patient Persuasion: Medical Students’ Views

September 5, 2025

Chitosan Formulations: Innovations in Therapeutic Applications

September 5, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tamibarotene Drives Neuroblastoma Cell Differentiation via PI3K/AKT

Unveiling KRTAP5-AS1/miR-199b-5p/CYP19A1 in PCOS

Coral-Inspired Pill Reveals Insights into the Gut’s Hidden Ecosystem

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.