• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers reveal oxygenate-based routes in syngas conversion over oxide-zeolite bifunctional catalysts

Bioengineer by Bioengineer
June 23, 2022
in Chemistry
Reading Time: 2 mins read
0
Researchers reveal oxygenate-based routes in syngas conversion over oxide-zeolite bifunctional catalysts
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A research team led by Prof. HOU Guangjin and Prof. BAO Xinhe from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS) has revealed the oxygenate-based routes in syngas conversion over oxide–zeolite (OXZEO) bifunctional catalysts by solid-state Nuclear Magnetic Resonance (NMR).

Researchers reveal oxygenate-based routes in syngas conversion over oxide-zeolite bifunctional catalysts

Credit: DICP

A research team led by Prof. HOU Guangjin and Prof. BAO Xinhe from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS) has revealed the oxygenate-based routes in syngas conversion over oxide–zeolite (OXZEO) bifunctional catalysts by solid-state Nuclear Magnetic Resonance (NMR).

This study was published in Nature Catalysis on June 23.

OXZEO catalysis was proposed in 2016 by Prof. BAO Xinhe and Prof. PAN Xiulian from DICP. It provides a platform for the efficient utilization of coal and other carbon resources. However, the reaction mechanism in OXZEO catalysis still remains unclear.

In this study, the researchers chose the syngas conversion over the ZnAlOx/H-ZSM-5 bifunctional catalyst as a model system to highlight the mechanistic difference in the OXZEO-based syngas direct conversion. ZnAlOx is a typical metal oxide for syngas to methanol process while H-ZSM-5 is a typical zeolite for methanol to hydrocarbons (MTH) reaction.

They used the quasi-in situ solid-state NMR (ssNMR)-Gas Chromatography (GC) analysis strategy to reveal the dynamic evolution of abundant critical and/or transient intermediates, including multi-carbon carboxylates, alkoxyls, acid-bounded methyl-cyclopentenones, and methyl-cyclopentenyl carbocations, from the very early induction period to the steady-state conversion under high-pressure flow-reaction conditions.

Oxygenate-based routes were proved to be contributed to the outlet olefins and aromatics, where the feed, i.e., CO and H2, was also a vigorous participant in these secondary reactions. In addition to the ZnAlOx/H-ZSM-5 catalyst, the researchers also discovered that the key intermediates exist in multiple OXZEO catalysts, proving the universality of oxygenate-based routes in OXZEO-based syngas conversion.

“Our findings provide new insights into the reaction mechanism of syngas conversion on bifunctional catalysts, and may also help to better understand the mechanism of CO2 and biomass conversion,” said Prof. HOU.

This work was supported by the National Key R&D Programs of China, the National Natural Science Foundation of China, the Liaoning Revitalization Talents Programs, the China National Postdoctoral Programs for Innovative Talents, and the China Postdoctoral Science Foundation.



Journal

Nature Catalysis

DOI

10.1038/s41929-022-00806-2

Method of Research

Commentary/editorial

Subject of Research

Not applicable

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Alkaloid Chemistry: First Asymmetric Syntheses of Seven Quebracho Indole Alkaloids Achieved in Just 7-10 Steps Using “Antenna Ligands”

October 31, 2025
blank

Dual-Function Electrocatalysis: A Comprehensive Overview

October 31, 2025

Cologne Researchers Unveil New Element in the “Nuclear Periodic Table”

October 31, 2025

Molecular-Level Breakthrough in Electrochromism Unveiled

October 31, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1295 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Immune Checkpoint Inhibition Shifts Failure Patterns in Lung Cancer

Real-World Insights on Biologic Treatment Adherence

Comparing Glucose Monitoring Methods for Diabetes Care

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.